Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Eating in mice with gastric bypass surgery causes exaggerated activation of brainstem anorexia circuit

Abstract

Background/Objective:

Obesity and metabolic diseases are at an alarming level globally and increasingly affect children and adolescents. Gastric bypass and other bariatric surgeries have proven remarkably successful and are increasingly performed worldwide. Reduced desire to eat and changes in eating behavior and food choice account for most of the initial weight loss and diabetes remission after surgery, but the underlying mechanisms of altered gut–brain communication are unknown.

Subjects/Methods:

To explore the potential involvement of a powerful brainstem anorexia pathway centered around the lateral parabrachial nucleus (lPBN), we measured meal-induced neuronal activation by means of c-Fos immunohistochemistry in a new high-fat diet-induced obese mouse model of Roux-en-Y gastric bypass (RYGB) at 10 and 40 days after RYGB or sham surgery.

Results:

Voluntary ingestion of a meal 10 days after RYGB, but not after sham surgery, strongly and selectively activates calcitonin gene-related peptide neurons in the external lPBN as well as neurons in the nucleus tractus solitarius, area postrema and medial amygdala. At 40 days after surgery, meal-induced activation in all these areas was greatly diminished and did not reach statistical significance.

Conclusions:

The neural activation pattern and dynamics suggest a role of the brainstem anorexia pathway in the early effects of RYGB on meal size and food intake that may lead to adaptive neural and behavioral changes involved in the control of food intake and body weight at a lower level. However, selective inhibition of this pathway will be required for a more causal implication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Flynn CR, Albaugh VL, Cai S, Cheung-Flynn J, Williams PE, Brucker RM et al. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat Commun 2015; 6: 7715.

    Article  CAS  Google Scholar 

  2. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 2014; 509: 183–188.

    Article  CAS  Google Scholar 

  3. Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM . Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 2013; 5: 178ra141.

    Article  Google Scholar 

  4. Zechner JF, Mirshahi UL, Satapati S, Berglund ED, Rossi J, Scott MM et al. Weight-independent effects of roux-en-Y gastric bypass on glucose homeostasis via melanocortin-4 receptors in mice and humans. Gastroenterology 2013; 144: 580–590 e587.

    Article  CAS  Google Scholar 

  5. Saeidi N, Meoli L, Nestoridi E, Gupta NK, Kvas S, Kucharczyk J et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science 2013; 341: 406–410.

    Article  CAS  Google Scholar 

  6. Shin AC, Zheng H, Pistell PJ, Berthoud HR . Roux-en-Y gastric bypass surgery changes food reward in rats. Int J Obes (Lond) 2011; 35: 642–651.

    Article  CAS  Google Scholar 

  7. Chandarana K, Gelegen C, Karra E, Choudhury AI, Drew ME, Fauveau V et al. Diet and gastrointestinal bypass-induced weight loss: the roles of ghrelin and peptide YY. Diabetes 2011; 60: 810–818.

    Article  CAS  Google Scholar 

  8. Mul JD, Begg DP, Alsters SI, van Haaften G, Duran KJ, D'Alessio DA et al. Effect of vertical sleeve gastrectomy in melanocortin receptor 4-deficient rats. Am J Physiol Endocrinol Metab 2012; 303: E103–E110.

    Article  CAS  Google Scholar 

  9. Chambers AP, Jessen L, Ryan KK, Sisley S, Wilson-Perez HE, Stefater MA et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology 2011; 141: 950–958.

    Article  CAS  Google Scholar 

  10. Hatoum IJ, Stylopoulos N, Vanhoose AM, Boyd KL, Yin DP, Ellacott KL et al. Melanocortin-4 receptor signaling is required for weight loss after gastric bypass surgery. J Clin Endocrinol Metab 2012; 97: E1023–E1031.

    Article  CAS  Google Scholar 

  11. le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg 2007; 246: 780–785.

    Article  Google Scholar 

  12. Lingvay I, Guth E, Islam A, Livingston E . Rapid improvement of diabetes after gastric bypass surgery: is it the diet or surgery? Diabetes Care 2013; 36: 2741–2747.

    Article  Google Scholar 

  13. Lips MA, de Groot GH, van Klinken JB, Aarts E, Berends FJ, Janssen IM et al. Calorie restriction is a major determinant of the short-term metabolic effects of gastric bypass surgery in obese type 2 diabetic patients. Clin Endocrinol (Oxf) 2013; 80: 834–842.

    Article  Google Scholar 

  14. Jackness C, Karmally W, Febres G, Conwell IM, Ahmed L, Bessler M et al. Very low calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and beta-cell function in type 2 diabetic patients. Diabetes 2013; 62: 3027–3032.

    Article  CAS  Google Scholar 

  15. Schmidt JB, Pedersen SD, Gregersen NT, Vestergaard L, Nielsen MS, Ritz C et al. Effects of RYGB on energy expenditure, appetite and glycemic control: a randomized controlled clinical trial. Int J Obes (Lond) 2015; 40: 281–290.

    Article  Google Scholar 

  16. Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 2004; 351: 2683–2693.

    Article  Google Scholar 

  17. Laurenius A, Larsson I, Bueter M, Melanson KJ, Bosaeus I, Forslund HB et al. Changes in eating behaviour and meal pattern following Roux-en-Y gastric bypass. Int J Obes (Lond) 2012; 36: 348–355.

    Article  CAS  Google Scholar 

  18. Mumphrey MB, Hao Z, Townsend RL, Patterson LM, Morrison CD, Munzberg H et al. Reversible hyperphagia and obesity in rats with gastric bypass by central MC3/4R blockade. Obesity (Silver Spring) 2014; 22: 1847–1853.

    Article  Google Scholar 

  19. Stefater MA, Perez-Tilve D, Chambers AP, Wilson-Perez HE, Sandoval DA, Berger J et al. Sleeve gastrectomy induces loss of weight and fat mass in obese rats, but does not affect leptin sensitivity. Gastroenterology 2010; 138: 2426–2436, 2436 e2421-2423.

    Article  CAS  Google Scholar 

  20. Wu Q, Boyle MP, Palmiter RD . Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 2009; 137: 1225–1234.

    Article  Google Scholar 

  21. Wu Q, Clark MS, Palmiter RD . Deciphering a neuronal circuit that mediates appetite. Nature 2012; 483: 594–597.

    Article  CAS  Google Scholar 

  22. Wu Q, Palmiter RD . GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur J Pharmacol 2010; 660: 21–27.

    Article  Google Scholar 

  23. Atasoy D, Betley JN, Su HH, Sternson SM . Deconstruction of a neural circuit for hunger. Nature 2012; 488: 172–177.

    Article  CAS  Google Scholar 

  24. Sternson SM . Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron 2013; 77: 810–824.

    Article  CAS  Google Scholar 

  25. Dobolyi A, Irwin S, Makara G, Usdin TB, Palkovits M . Calcitonin gene-related peptide-containing pathways in the rat forebrain. J Comp Neurol 2005; 489: 92–119.

    Article  CAS  Google Scholar 

  26. D'Hanis W, Linke R, Yilmazer-Hanke DM . Topography of thalamic and parabrachial calcitonin gene-related peptide (CGRP) immunoreactive neurons projecting to subnuclei of the amygdala and extended amygdala. J Comp Neurol 2007; 505: 268–291.

    Article  CAS  Google Scholar 

  27. Schwaber JS, Sternini C, Brecha NC, Rogers WT, Card JP . Neurons containing calcitonin gene-related peptide in the parabrachial nucleus project to the central nucleus of the amygdala. J Comp Neurol 1988; 270: 416–426 398-419.

    Article  CAS  Google Scholar 

  28. Carter ME, Soden ME, Zweifel LS, Palmiter RD . Genetic identification of a neural circuit that suppresses appetite. Nature 2013; 503: 111–114.

    Article  CAS  Google Scholar 

  29. Zheng H, Shin AC, Lenard NR, Townsend RL, Patterson LM, Sigalet DL et al. Meal patterns, satiety, and food choice in a rat model of Roux-en-Y gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol 2009; 297: R1273–R1282.

    Article  CAS  Google Scholar 

  30. Hao Z, Zhao Z, Berthoud HR, Ye J . Development and verification of a mouse model for roux-en-Y gastric bypass surgery with a small gastric pouch. PLoS One 2013; 8: e52922.

    Article  CAS  Google Scholar 

  31. Ye J, Hao Z, Mumphrey MB, Townsend RL, Patterson LM, Stylopoulos N et al. GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents. Am J Physiol Regul Integr Comp Physiol 2014; 306: R352–R362.

    Article  CAS  Google Scholar 

  32. Grayson BE, Schneider KM, Woods SC, Seeley RJ . Improved rodent maternal metabolism but reduced intrauterine growth after vertical sleeve gastrectomy. Sci Transl Med 2013; 5: 199ra112.

    Article  Google Scholar 

  33. Wu Q, Zheng R, Srisai D, McNight GS, Palmiter RD . The NR2B subunit of the NMDA glutamate receptor in the parabrachial nucleus regulates appetite. Proc Natl Acad Sci USA 2013; 110: 14765–14770.

    Article  CAS  Google Scholar 

  34. Baird JP, Travers JB, Travers SP . Parametric analysis of gastric distension responses in the parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol 2001; 281: R1568–R1580.

    Article  CAS  Google Scholar 

  35. Baird JP, Travers SP, Travers JB . Integration of gastric distension and gustatory responses in the parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol 2001; 281: R1581–R1593.

    Article  CAS  Google Scholar 

  36. Karimnamazi H, Travers SP, Travers JB . Oral and gastric input to the parabrachial nucleus of the rat. Brain Res 2002; 957: 193–206.

    Article  CAS  Google Scholar 

  37. Gieroba ZJ, Blessing WW . Fos-containing neurons in medulla and pons after unilateral stimulation of the afferent abdominal vagus in conscious rabbits. Neuroscience 1994; 59: 851–858.

    Article  CAS  Google Scholar 

  38. Li BH, Rowland NE . Effects of vagotomy on cholecystokinin- and dexfenfluramine-induced Fos-like immunoreactivity in the rat brain. Brain Res Bull 1995; 37: 589–593.

    Article  CAS  Google Scholar 

  39. Rowland NE, Crews EC, Gentry RM . Comparison of Fos induced in rat brain by GLP-1 and amylin. Regul Pept 1997; 71: 171–174.

    Article  CAS  Google Scholar 

  40. Degen L, Oesch S, Casanova M, Graf S, Ketterer S, Drewe J et al. Effect of peptide YY3-36 on food intake in humans. Gastroenterology 2005; 129: 1430–1436.

    Article  CAS  Google Scholar 

  41. Labouesse MA, Stadlbauer U, Weber E, Arnold M, Langhans W, Pacheco-Lopez G . Vagal afferents mediate early satiation and prevent flavour avoidance learning in response to intraperitoneally infused exendin-4. J Neuroendocrinol 2012; 24: 1505–1516.

    Article  CAS  Google Scholar 

  42. Baraboi ED, Michel C, Smith P, Thibaudeau K, Ferguson AV, Richard D . Effects of albumin-conjugated PYY on food intake: the respective roles of the circumventricular organs and vagus nerve. Eur J Neurosci 2010; 32: 826–839.

    Article  Google Scholar 

  43. Lutz TA . Pancreatic amylin as a centrally acting satiating hormone. Curr Drug Targets 2005; 6: 181–189.

    Article  CAS  Google Scholar 

  44. Lamprecht R, Dudai Y . Differential modulation of brain immediate early genes by intraperitoneal LiCl. Neuroreport 1995; 7: 289–293.

    CAS  PubMed  Google Scholar 

  45. Swank MW, Bernstein IL . c-Fos induction in response to a conditioned stimulus after single trial taste aversion learning. Brain Res 1994; 636: 202–208.

    Article  CAS  Google Scholar 

  46. Gaykema RP, Daniels TE, Shapiro NJ, Thacker GC, Park SM, Goehler LE . Immune challenge and satiety-related activation of both distinct and overlapping neuronal populations in the brainstem indicate parallel pathways for viscerosensory signaling. Brain Res 2009; 1294: 61–79.

    Article  CAS  Google Scholar 

  47. Verbalis JG, McCann MJ, McHale CM, Stricker EM . Oxytocin secretion in response to cholecystokinin and food: differentiation of nausea from satiety. Science 1986; 232: 1417–1419.

    Article  CAS  Google Scholar 

  48. Billig I, Yates BJ, Rinaman L . Plasma hormone levels and central c-Fos expression in ferrets after systemic administration of cholecystokinin. Am J Physiol Regul Integr Comp Physiol 2001; 281: R1243–R1255.

    Article  CAS  Google Scholar 

  49. Maniscalco JW, Kreisler AD, Rinaman L . Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing peptide or glucagon-like peptide 1. Front Neurosci 2012; 6: 199.

    PubMed  Google Scholar 

  50. Emond M, Schwartz GJ, Moran TH . Meal-related stimuli differentially induce c-Fos activation in the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 2001; 280: R1315–R1321.

    Article  CAS  Google Scholar 

  51. Kreisler AD, Davis EA, Rinaman L . Differential activation of chemically identified neurons in the caudal nucleus of the solitary tract in non-entrained rats after intake of satiating vs. non-satiating meals. Physiol Behav 2014; 136: 47–54.

    Article  CAS  Google Scholar 

  52. de Lartigue G, Ronveaux CC, Raybould HE . Vagal plasticity the key to obesity. Mol Metab 2014; 3: 855–856.

    Article  CAS  Google Scholar 

  53. Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel-Courtin C, Gass M et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg 2012; 22: 740–748.

    Article  Google Scholar 

  54. le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 2006; 243: 108–114.

    Article  Google Scholar 

  55. Mokadem M, Zechner JF, Margolskee RF, Drucker DJ, Aguirre V . Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency. Mol Metab 2014; 3: 191–201.

    Article  CAS  Google Scholar 

  56. Wilson-Perez HE, Chambers AP, Ryan KK, Li B, Sandoval DA, Stoffers D et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide 1 receptor deficiency. Diabetes 2013; 62: 2380–2385.

    Article  CAS  Google Scholar 

  57. Powley TL, Phillips RJ . Gastric satiation is volumetric, intestinal satiation is nutritive. Physiol Behav 2004; 82: 69–74.

    Article  CAS  Google Scholar 

  58. Bueter M, Lowenstein C, Ashrafian H, Hillebrand J, Bloom SR, Olbers T et al. Vagal sparing surgical technique but not stoma size affects body weight loss in rodent model of gastric bypass. Obes Surg 2010; 20: 616–622.

    Article  Google Scholar 

  59. Hao Z, Townsend RL, Mumphrey MB, Patterson LM, Ye J, Berthoud HR . Vagal innervation of intestine contributes to weight loss after Roux-en-Y gastric bypass surgery in rats. Obes Surg 2014; 24: 2145–2151.

    Article  Google Scholar 

  60. Bjorklund P, Laurenius A, Een E, Olbers T, Lonroth H, Fandriks L . Is the roux limb a determinant for meal size after gastric bypass surgery? Obes Surg 2010; 20: 1408–1414.

    Article  Google Scholar 

  61. Cai H, Haubensak W, Anthony TE, Anderson DJ . Central amygdala PKC-delta(+) neurons mediate the influence of multiple anorexigenic signals. Nat Neurosci 2014; 17: 1240–1248.

    Article  CAS  Google Scholar 

  62. Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 2010; 468: 270–276.

    Article  CAS  Google Scholar 

  63. Mumphrey MB, Patterson LM, Zheng H, Berthoud HR . Roux-en-Y gastric bypass surgery increases number but not density of CCK-, GLP-1-, 5-HT-, and neurotensin-expressing enteroendocrine cells in rats. Neurogastroenterol Motil 2013; 25: e70–e79.

    Article  CAS  Google Scholar 

  64. Hansen CF, Bueter M, Theis N, Lutz T, Paulsen S, Dalboge LS et al. Hypertrophy dependent doubling of L-cells in Roux-en-Y gastric bypass operated rats. PLoS One 2013; 8: e65696.

    Article  CAS  Google Scholar 

  65. Yashiro K, Philpot BD . Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 2008; 55: 1081–1094.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Neelima Gonugunta for help with immunohistochemistry. This study was supported by the National Institutes of Health Grants DK047348 (to H-RB), DK085495 (to JY) and DK092587 (to HM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-R Berthoud.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mumphrey, M., Hao, Z., Townsend, R. et al. Eating in mice with gastric bypass surgery causes exaggerated activation of brainstem anorexia circuit. Int J Obes 40, 921–928 (2016). https://doi.org/10.1038/ijo.2016.38

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2016.38

This article is cited by

Search

Quick links