Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Impact of high-fat feeding on basic helix–loop–helix transcription factors controlling enteroendocrine cell differentiation

A Retraction to this article was published on 06 July 2016

A Corrigendum to this article was published on 11 November 2014

Abstract

Background and objectives:

Gut hormones secreted by enteroendocrine cells (EECs) play a major role in energy regulation. Differentiation of EEC is controlled by the expression of basic helix–loop–helix (bHLH) transcription factors. High-fat (HF) feeding alters gut hormone levels; however, the impact of HF feeding on bHLH transcription factors in mediating EEC differentiation and subsequent gut hormone secretion and expression is not known.

Methods:

Outbred Sprague–Dawley rats were maintained on chow or HF diet for 12 weeks. Gene and protein expression of intestinal bHLH transcription factors, combined with immunofluorescence studies, were analyzed for both groups in the small intestine and colon. Gut permeability, intestinal lipid and carbohydrate transporters as well as circulating levels and intestinal protein expression of gut peptides were determined.

Results:

We showed that HF feeding resulted in hyperphagia and increased adiposity. HF-fed animals exhibited decreased expression of bHLH transcription factors controlling EEC differentiation (MATH1, NGN3, NEUROD1) and increased expression of bHLH factors modulating enterocyte expression. Furthermore, HF-fed animals had decreased number of total EECs and L-cells. This was accompanied by increased gut permeability and expression of lipid and carbohydrate transporters, and a decrease in circulating and intestinal gut hormone levels.

Conclusions:

Taken together, our results demonstrate that HF feeding caused decreased secretory lineage (that is, EECs) differentiation through downregulation of bHLH transcription factors, resulting in reduced EEC number and gut hormone levels. Thus, impaired EEC differentiation pathways by HF feeding may promote hyperphagia and subsequent obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gerbe F, van Es JH, Makrini L, Brulin B, Mellitzer G, Robine S et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J Cell Biol 2011; 192: 767–780.

    Article  CAS  Google Scholar 

  2. Murphy KG, Bloom SR . Gut hormones and the regulation of energy homeostasis. Nature 2006; 444: 854–859.

    Article  CAS  Google Scholar 

  3. Crosnier C, Stamataki D, Lewis J . Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 2006; 7: 349–359.

    Article  CAS  Google Scholar 

  4. Duca FA, Sakar Y, Covasa M . Combination of obesity and high-fat feeding diminishes sensitivity to GLP-1R agonist, Exendin-4. Diabetes 2013; 62: 2410–2415.

    Article  CAS  Google Scholar 

  5. Schonhoff SE, Giel-Moloney M, Leiter AB . Minireview: development and differentiation of gut endocrine cells. Endocrinology 2004; 145: 2639–2644.

    Article  CAS  Google Scholar 

  6. Moran GW, Leslie FC, Levison SE, Worthington J, McLaughlin JT . Enteroendocrine cells: neglected players in gastrointestinal disorders? Therap Adv Gastroenterol 2008; 1: 51–60.

    Article  Google Scholar 

  7. Crosnier C, Vargesson N, Gschmeissner S, Ariza-McNaughton L, Morrison A, Lewis J . Delta-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development 2005; 132: 1093–1104.

    Article  CAS  Google Scholar 

  8. Ogaki S, Shiraki N, Kume K, Kume S . Wnt and notch signals guide embryonic stem cell differentiation into the intestinal lineages. Stem Cells 2013; 31: 1086–1096.

    Article  CAS  Google Scholar 

  9. Bar Y, Russ HA, Knoller S, Ouziel-Yahalom L, Efrat S . HES-1 is involved in adaptation of adult human beta-cells to proliferation in vitro. Diabetes 2008; 57: 2413–2420.

    Article  CAS  Google Scholar 

  10. Fujimori M, Ikeda S, Shimizu Y, Okajima M, Asahara T . Accumulation of beta-catenin protein and mutations in exon 3 of beta-catenin gene in gastrointestinal carcinoid tumor. Cancer Res 2001; 61: 6656–6659.

    CAS  PubMed  Google Scholar 

  11. Li HJ, Ray SK, Singh NK, Johnston B, Leiter AB . Basic helix-loop-helix transcription factors and enteroendocrine cell differentiation. Diabetes Obes Metab 2011; 13 : 5–12.

    Article  CAS  Google Scholar 

  12. Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY . Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 2001; 294: 2155–2158.

    Article  CAS  Google Scholar 

  13. VanDussen KL, Samuelson LC . Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate. Dev Biol 2010; 346: 215–223.

    Article  CAS  Google Scholar 

  14. Schonhoff SE, Giel-Moloney M, Leiter AB . Neurogenin 3-expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non-endocrine cell types. Dev Biol 2004; 270: 443–454.

    Article  CAS  Google Scholar 

  15. Jenny M, Uhl C, Roche C, Duluc I, Guillermin V, Guillemot F et al. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J 2002; 21: 6338–6347.

    Article  CAS  Google Scholar 

  16. Ye DZ, Kaestner KH . Foxa1 and Foxa2 control the differentiation of goblet and enteroendocrine L- and D-cells in mice. Gastroenterology 2009; 137: 2052–2062.

    Article  CAS  Google Scholar 

  17. Ratineau C, Petry MW, Mutoh H, Leiter AB . Cyclin D1 represses the basic helix-loop-helix transcription factor, BETA2/NeuroD. J Biol Chem 2002; 277: 8847–8853.

    Article  CAS  Google Scholar 

  18. Beucher A, Gjernes E, Collin C, Courtney M, Meunier A, Collombat P et al. The homeodomain-containing transcription factors Arx and Pax4 control enteroendocrine subtype specification in mice. PLoS One 2012; 7: e36449.

    Article  CAS  Google Scholar 

  19. Lopez-Diaz L, Jain RN, Keeley TM, VanDussen KL, Brunkan CS, Gumucio DL et al. Intestinal Neurogenin 3 directs differentiation of a bipotential secretory progenitor to endocrine cell rather than goblet cell fate. Dev Biol 2007; 309: 298–305.

    Article  CAS  Google Scholar 

  20. Pearl EJ, Jarikji Z, Horb ME . Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes. Dev Biol 2011; 351: 135–145.

    Article  CAS  Google Scholar 

  21. Gniuli D, Castagneto-Gissey G, Iaconelli A, Leccesi L, Mingrone G . Fat mass largely contributes to insulin mediated glucose uptake in morbidly obese subjects. Int J Obes (Lond) 2010; 34: 1726–1732.

    Article  CAS  Google Scholar 

  22. Hyland NP, Pittman QJ, Sharkey KA . Peptide YY containing enteroendocrine cells and peripheral tissue sensitivity to PYY and PYY(3–36) are maintained in diet-induced obese and diet-resistant rats. Peptides 2007; 28: 1185–1190.

    Article  CAS  Google Scholar 

  23. Mumphrey MB, Patterson LM, Zheng H, Berthoud HR . Roux-en-Y gastric bypass surgery increases number but not density of CCK-, GLP-1-, 5-HT-, and neurotensin-expressing enteroendocrine cells in rats. Neurogastroenterol Motil 2012; 25: e70–e79.

    Article  Google Scholar 

  24. Gniuli D, Calcagno A, Dalla Libera L, Calvani R, Leccesi L, Caristo ME et al. High-fat feeding stimulates endocrine, glucose-dependent insulinotropic polypeptide (GIP)-expressing cell hyperplasia in the duodenum of Wistar rats. Diabetologia 53: 2233–2240.

    Article  CAS  Google Scholar 

  25. Soyer J, Flasse L, Raffelsberger W, Beucher A, Orvain C, Peers B et al. Rfx6 is an Ngn3-dependent winged helix transcription factor required for pancreatic islet cell development. Development 2009; 137: 203–212.

    Article  Google Scholar 

  26. Swartz TD, Duca FA, de Wouters T, Sakar Y, Covasa M . Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota. Br J Nutr 2011; 107: 621–630.

    Article  Google Scholar 

  27. Duca FA, Swartz TD, Sakar Y, Covasa M . Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PLoS One 2012; 7: e39748.

    Article  CAS  Google Scholar 

  28. Turner JR . Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol 2006; 169: 1901–1909.

    Article  CAS  Google Scholar 

  29. Covasa M . Deficits in gastrointestinal responses controlling food intake and body weight. Am J Physiol Regul Integr Comp Physiol 2010; 299: R1423–R1439.

    Article  CAS  Google Scholar 

  30. Mao J, Hu X, Xiao Y, Yang C, Ding Y, Hou N et al. Overnutrition stimulates intestinal epithelium proliferation through beta-catenin signaling in obese mice. Diabetes 2013; 62: 3736–3746.

    Article  CAS  Google Scholar 

  31. Duca FA, Swartz TD, Sakar Y, Covasa M . Decreased intestinal nutrient response in diet-induced obese rats: role of gut peptides and nutrient receptors. Int J Obes (Lond) 2012; 37: 375–381.

    Article  Google Scholar 

  32. de Santa Barbara P, van den Brink GR, Roberts DJ . Development and differentiation of the intestinal epithelium. Cell Mol Life Sci 2003; 60: 1322–1332.

    Article  CAS  Google Scholar 

  33. Lee JC, Smith SB, Watada H, Lin J, Scheel D, Wang J et al. Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes 2001; 50: 928–936.

    Article  CAS  Google Scholar 

  34. Gu D, Wang Z, Dou X, Zhang X, Li S, Vu L et al. Inhibition of ERK1/2 pathway suppresses adiponectin secretion via accelerating protein degradation by Ubiquitin-proteasome system: relevance to obesity-related adiponectin decline. Metabolism 2013; 62: 1137–1148.

    Article  CAS  Google Scholar 

  35. Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M, Tsai MJ . Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol 2000; 20: 3292–3307.

    Article  CAS  Google Scholar 

  36. Smith SB, Gasa R, Watada H, Wang J, Griffen SC, German MS . Neurogenin3 and hepatic nuclear factor 1 cooperate in activating pancreatic expression of Pax4. J Biol Chem 2003; 278: 38254–38259.

    Article  CAS  Google Scholar 

  37. Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 1997; 11: 2323–2334.

    Article  CAS  Google Scholar 

  38. Miyamoto Y, Miyamoto M . Immunohistochemical localizations of secretin, cholecystokinin, and somatostatin in the rat small intestine after acute cisplatin treatment. Exp Mol Pathol 2004; 77: 238–245.

    Article  CAS  Google Scholar 

  39. Hill ME, Asa SL, Drucker DJ . Essential requirement for Pax6 in control of enteroendocrine proglucagon gene transcription. Mol Endocrinol 1999; 13: 1474–1486.

    Article  CAS  Google Scholar 

  40. Suzuki K, Harada N, Yamane S, Nakamura Y, Sasaki K, Nasteska D et al. Transcriptional regulatory factor X6 (Rfx6) increases gastric inhibitory polypeptide (GIP) expression in enteroendocrine K-cells and is involved in GIP hypersecretion in high fat diet-induced obesity. J Biol Chem 2012; 288: 1929–1938.

    Article  Google Scholar 

  41. Vollmer K, Holst JJ, Baller B, Ellrichmann M, Nauck MA, Schmidt WE et al. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 2008; 57: 678–687.

    Article  CAS  Google Scholar 

  42. Kamoi K, Shinozaki Y, Furukawa K, Sasaki H . Potential correlation between plasma total GIP levels and body mass index in Japanese patients with types 1 or 2 diabetes mellitus. Endocr J 2012; 59: 353–363.

    Article  CAS  Google Scholar 

  43. Gniuli D, Calcagno A, Dalla Libera L, Calvani R, Leccesi L, Caristo ME et al. High-fat feeding stimulates endocrine, glucose-dependent insulinotropic polypeptide (GIP)-expressing cell hyperplasia in the duodenum of Wistar rats. Diabetologia 2010; 53: 2233–2240.

    Article  CAS  Google Scholar 

  44. Porat S, Weinberg-Corem N, Tornovsky-Babaey S, Schyr-Ben-Haroush R, Hija A, Stolovich-Rain M et al. Control of pancreatic beta cell regeneration by glucose metabolism. Cell Metab 2011; 13: 440–449.

    Article  CAS  Google Scholar 

  45. Attig L, Vige A, Gabory A, Karimi M, Beauger A, Gross MS et al. Dietary alleviation of maternal obesity and diabetes: increased resistance to diet-induced obesity transcriptional and epigenetic signatures. PLoS One 2013; 8: e66816.

    Article  CAS  Google Scholar 

  46. Zhao J, Goldberg J, Bremner JD, Vaccarino V . Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes 2012; 61: 542–546.

    Article  CAS  Google Scholar 

  47. Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing X et al. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 2013; 26: 1203–1212.

    Article  Google Scholar 

  48. Zheng H, Pritchard DM, Yang X, Bennett E, Liu G, Liu C et al. KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2009; 296: G490–G498.

    Article  CAS  Google Scholar 

  49. Kwon MC, Koo BK, Kim YY, Lee SH, Kim NS, Kim JH et al. Essential role of CR6-interacting factor 1 (Crif1) in E74-like factor 3 (ELF3)-mediated intestinal development. J Biol Chem 2009; 284: 33634–33641.

    Article  CAS  Google Scholar 

  50. Bergstrom KS, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 2010; 6: e1000902.

    Article  Google Scholar 

  51. Wei X, Yang Z, Rey FE, Ridaura VK, Davidson NO, Gordon JI et al. Fatty acid synthase modulates intestinal barrier function through palmitoylation of mucin 2. Cell Host Microbe 2012; 11: 140–152.

    Article  CAS  Google Scholar 

  52. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58: 1091–1103.

    Article  CAS  Google Scholar 

  53. Sakar Y, Nazaret C, Letteron P, Ait Omar A, Avenati M, Viollet B et al. Positive regulatory control loop between gut leptin and intestinal GLUT2/GLUT5 transporters links to hepatic metabolic functions in rodents. PLoS One 2009; 4: e7935.

    Article  Google Scholar 

  54. Ait-Omar A, Monteiro-Sepulveda M, Poitou C, Le Gall M, Cotillard A, Gilet J et al. GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat-fed mice. Diabetes 2011; 60: 2598–2607.

    Article  CAS  Google Scholar 

  55. Zheng Y, Scow JS, Duenes JA, Sarr MG . Mechanisms of glucose uptake in intestinal cell lines: role of GLUT2. Surgery 2011; 151: 13–25.

    Article  Google Scholar 

  56. Zambrowicz B, Freiman J, Brown PM, Frazier KS, Turnage A, Bronner J et al. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin Pharmacol Ther 2012; 92: 158–169.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the ANAXEM team for their assistance in the animal facilities, and Julie Cadiou for assisting with the behavioral experiments. This study was supported by INRA through a scientific package to MC and by the Romanian National Program PN-II-ID-PCE-2012-4-0608 no. 48/02.09.2013, ‘Analysis of novel risk factors influencing control of food intake and regulation of body weight’.

AUTHOR CONTRIBUTIONS

YS, MC, HB and CD designed the study. YS, MC, FD and BL researched the data. YS, FAD and MC wrote and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Covasa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakar, Y., Duca, F., Langelier, B. et al. Impact of high-fat feeding on basic helix–loop–helix transcription factors controlling enteroendocrine cell differentiation. Int J Obes 38, 1440–1448 (2014). https://doi.org/10.1038/ijo.2014.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2014.20

Keywords

This article is cited by

Search

Quick links