Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Inducing neutrophil recruitment in the liver of ICAM-1-deficient mice using polyethyleneimine grafted with Pluronic P123 as an organ-specific carrier for transgenic ICAM-1

Abstract

Coordinated expression of cell adhesion molecules and chemokines on the surface of vascular endothelium is responsible for the homing of immune effector cells to targeted sites. One way to attract non-activated immune cells to targeted organs is to use transgenically expressed adhesion molecules responsible for leukocyte recruitment. We have previously shown that polyethyleneimine (PEI) grafted with non-ionic amphiphilic Pluronic P123 block copolymer (P123PEI) modifies biodistribution of plasmid DNA toward the liver. In the present study, a P123PEI-formulated plasmid carrying the gene encoding for the murine ICAM-1 molecule was injected i.v. into transgenic ICAM-1-deficient mice. The RT-PCR analysis of ICAM-1 mRNA expression showed that P123PEI induced a dose-dependent expression of ICAM-1 in the liver. Furthermore, this expression of ICAM-1 induced neutrophil invasion in the liver, while no such invasion was observed in mice injected with formulated control plasmid or naked DNA. These results suggest that P123PEI allows functional transgene expression in the liver following i.v. injection and that ICAM-1 could be used to enhance immune response locally by attracting immune effector cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Sligh JE Jr et al. Inflammatory and immune responses are impaired in mice deficient in intercellular adhesion molecule 1 Proc Natl Acad Sci USA 1993 90: 8529–8533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu H et al. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice J Exp Med 1994 180: 95–109

    Article  CAS  PubMed  Google Scholar 

  3. Kamochi M et al. P-selectin and ICAM-1 mediate endotoxin-induced neutrophil recruitment and injury to the lung and liver Am J Physiol 1999 277: 310–319

    Article  Google Scholar 

  4. Marvin MR et al. Liver metastases are enhanced in homozygous deletionally mutant ICAM-1 or LFA-1 mice J Surg Res 1998 80: 143–148

    Article  CAS  PubMed  Google Scholar 

  5. Mei M et al. Measurement of serum circulating intercellular adhesion molecule-1 and its clinical significance in hepatocellular carcinoma: preliminary report J Hepatobiliary Pancreat Surg 1999 6: 181–185

    Article  CAS  PubMed  Google Scholar 

  6. Huang CC et al. Circulating intercellular adhesion molecule-1 in chronic liver disease and hepatocellular carcinoma Chung Hua I Hsueh Tsa Chih 1999 62: 487–495

    CAS  PubMed  Google Scholar 

  7. Yoong KF, McNab G, Hubscher SG, Adams DH . Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor-infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma J Immunol 1998 160: 3978–3988

    CAS  PubMed  Google Scholar 

  8. Emoto M et al. Critical role of leukocyte function-associated antigen-1 in liver accumulation of CD4+NKT cells J Immunol 1999 162: 5094–5098

    CAS  PubMed  Google Scholar 

  9. Kawamura T et al. Cytotoxic activity against tumour cells mediated by intermediate TCR cells in the liver and spleen Immunology 1996 89: 68–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seki S et al. Antimetastatic effect of NK1+ T cells on experimental haematogenous tumour metastases in the liver and lungs of mice Immunology 1997 92: 561–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okuno K et al. Involvement of liver-associated immunity in hepatic metastasis formation J Surg Res 1998 75: 148–152

    Article  CAS  PubMed  Google Scholar 

  12. Emoto M et al. Critical role of leukocyte function-associated antigen-1 in liver accumulation of CD4+NKT cells J Immunol 1999 162: 5094–5098

    CAS  PubMed  Google Scholar 

  13. Ottonello L et al. FMLP- and TNF-stimulated monoclonal Lym-1 antibody-dependent lysis of B lymphoblastoid tumour targets by neutrophils Br J Cancer 1999 80: 331–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ottonello L et al. Monoclonal Lym-1 antibody-dependent cytolysis by neutrophils exposed to granulocyte-macrophage colony-stimulating factor: intervention of FcgammaRII (CD32), CD11b-CD18 integrins and CD66b glycoproteins Blood 1999 93: 3505–3511

    CAS  PubMed  Google Scholar 

  15. Michon JM et al. In vivo induction of functional Fc gammaRI (CD64) on neutrophils and modulation of blood cytokine mRNA levels in cancer patients treated with G-CSF (rMetHuG-CSF) Br J Haematol 1998 100: 550–556

    Article  CAS  PubMed  Google Scholar 

  16. Cavallo F et al. Immune events associated with the cure of established tumors and spontaneous metastases by local and systemic interleukin 12 Cancer Res 1999 59: 414–421

    CAS  PubMed  Google Scholar 

  17. Wen W et al. The generation of endostatin is mediated by elastase Cancer Res 1999 59: 6052–6056

    CAS  PubMed  Google Scholar 

  18. Patterson BC, Sang QA . Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9) J Biol Chem 1997 272: 28823–28825

    Article  CAS  PubMed  Google Scholar 

  19. Dean PA, Ramsey PS, Donohue JH, Nelson H . Microvascular expression of MALA-2 correlates with in vivo lymphocyte trafficking and is preferentially enhanced in tumors by tumor necrosis factor-alpha and interleukin-1 alpha Int J Cancer 1994 59: 639–645

    Article  CAS  PubMed  Google Scholar 

  20. Whitehead RP et al. Phase I trial of simultaneous administration of interleukin 2 and interleukin 4 subcutaneously Clin Cancer Res 1995 10: 1145–1152

    Google Scholar 

  21. Enzinger PC et al. Phase II clinical trial of 13-cis-retinoic acid and interferon-alpha-2a in patients with advanced esophageal carcinoma Cancer 1999 85: 1213–1217

    Article  CAS  PubMed  Google Scholar 

  22. Clark JI et al. Daily subcutaneous ultra-low-dose interleukin 2 with daily low-dose interferon-alpha in patients with advanced renal cell carcinoma Clin Cancer Res 1999 5: 2374–2380

    CAS  PubMed  Google Scholar 

  23. Emtage PC et al. Adenoviral vectors expressing lymphotactin and interleukin 2 or lymphotactin and interleukin 12 synergize to facilitate tumor regression in murine breast cancer models Hum Gene Ther 1999 10: 697–709

    Article  CAS  PubMed  Google Scholar 

  24. Fushimi T, Kojima A, Moore MA, Crystal RG . Macrophage inflammatory protein 3alpha transgene attracts dendritic cells to established murine tumors and suppresses tumor growth J Clin Invest 2000 105: 1383–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miller PW et al. Intratumoral administration of adenoviral interleukin 7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication Hum Gene Ther 2000 11: 53–65

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen HK et al. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents Gene Therapy 2000 7: 126–138

    Article  CAS  PubMed  Google Scholar 

  27. King PD et al. Novel isoforms of murine intercellular adhesion molecule-1 generated by alternative RNA splicing J Immunol 1995 154: 6080–6093

    CAS  PubMed  Google Scholar 

  28. Takei F . Inhibition of mixed lymphocyte response by a rat monoclonal antibody to a novel murine lymphocyte activation antigen (MALA-2) J Immunol 1985 134: 1403–1407

    CAS  PubMed  Google Scholar 

  29. Lewinsohn DM, Bargatze RF, Butcher EC . Leukocyte-endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes J Immunol 1987 138: 4313–4321

    CAS  PubMed  Google Scholar 

  30. Lagasse E, Weissman IL . Flow cytometric identification of murine neutrophils and monocytes J Immunol Meth 1996 197: 139–150

    Article  CAS  Google Scholar 

  31. Moreau E et al. Interactions between red blood cells and a lethal, partly quaternized tertiary polyamine J Cont Rel 2000 64: 115–128

    Article  CAS  Google Scholar 

  32. Hart SL et al. Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector Hum Gene Ther 1998 9: 575–585

    Article  CAS  PubMed  Google Scholar 

  33. Spragg DD et al. Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system Proc Natl Acad Sci USA 1997 94: 8795–8800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee RJ, Huang L . Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer J Biol Chem 1996 271: 481–8487

    Google Scholar 

  35. Hisayasu S et al. In vivo targeted gene transfer into liver cells mediated by a novel galactosyl-D-lysine/D-serine copolymer Gene Therapy 1999 6: 689–693

    Article  CAS  PubMed  Google Scholar 

  36. Han J, Lim M, Yeom YI . Receptor-mediated gene transfer to cells of hepatic origin by galactosylated albumin-polylysine complexes Biol Pharm Bull 1999 22: 836–840

    Article  CAS  PubMed  Google Scholar 

  37. Springer TA . Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm Cell 1994 76: 301–314

    Article  CAS  PubMed  Google Scholar 

  38. Archelos JJ et al. Suppression of experimental allergic neuritis by an antibody to the intracellular adhesion molecule ICAM-1 Brain 1993 116: 1043–1058

    Article  PubMed  Google Scholar 

  39. Isobe M, Yagita H, Okumura K, Ihara A . Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1 Science 1992 255: 1125–1127

    Article  CAS  PubMed  Google Scholar 

  40. Toda K et al. Antisense intercellular adhesion molecule-1 (ICAM-1) oligodeoxyribonucleotide delivered during organ preservation inhibits posttransplant ICAM-1 expression and reduces primary lung isograft failure Circ Res 2000 86: 166–174

    Article  CAS  PubMed  Google Scholar 

  41. Feeley BT et al. Optimization of ex vivo pressure mediated delivery of antisense oligodeoxynucleotides to ICAM-1 reduces reperfusion injury in rat cardiac allografts Transplantation 2000 69: 1067–1074

    Article  CAS  PubMed  Google Scholar 

  42. Bennett CF et al. An ICAM-1 antisense oligonucleotide prevents and reverses dextran sulfate sodium-induced colitis in mice J Pharmacol Exp Ther 1997 280: 988–1000

    CAS  PubMed  Google Scholar 

  43. Wang HH, Nance DM, Orr FW . Murine hepatic microvascular adhesion molecule expression is inducible and has a zonal distribution Clin Exp Metastasis 1999 17: 149–155

    Article  CAS  PubMed  Google Scholar 

  44. van Den Engel NK et al. Circulating forms of intercellular adhesion molecule (ICAM)-1 in mice lacking membranous ICAM-1 Blood 2000 95: 1350–1355

    CAS  PubMed  Google Scholar 

  45. Sartor WM, Kyprianou N, Fabian DF, Lefor AT . Enhanced expression of ICAM-1 in a murine fibrosarcoma reduces tumor growth rate J Surg Res 1995 59: 66–74

    Article  CAS  PubMed  Google Scholar 

  46. D'Angelica M et al. Herpes simplex virus (HSV)-mediated ICAM-1 gene transfer abrogates tumorigenicity and induces anti-tumor immunity Mol Med 1999 5: 606–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Seventer GA et al. Analysis of T cell stimulation by superantigen plus major histocompatibility complex class II molecules or by CD3 monoclonal antibody: costimulation by purified adhesion ligands VCAM-1, ICAM-1, but not ELAM-1 J Exp Med 1991 174: 901–913

    Article  CAS  PubMed  Google Scholar 

  48. Altmann DM, Hogg N, Trowsdale J, Wilkinson D . Cotransfection of ICAM-1 and HLA-DR reconstitutes human antigen-presenting cell function in mouse L cells Nature 1989 338: 512–514

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the technical assistance of Claire Beauchemin and Doris Legault. The support from the National Science Foundation (BES-9907281) and Nebraska Research Initiative (Gene Therapy) is essential for the studies on non-viral gene delivery systems in UNMC. Dr St-Pierre is a scholar of the Fonds de la Recherche en Santé du Québec.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochietti, B., Lemieux, P., Kabanov, A. et al. Inducing neutrophil recruitment in the liver of ICAM-1-deficient mice using polyethyleneimine grafted with Pluronic P123 as an organ-specific carrier for transgenic ICAM-1. Gene Ther 9, 939–945 (2002). https://doi.org/10.1038/sj.gt.3301716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301716

Keywords

This article is cited by

Search

Quick links