Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preservation of forelimb function by UPF1 gene therapy in a rat model of TDP-43-induced motor paralysis

Abstract

Nonsense-mediated mRNA decay (NMD) is an RNA surveillance mechanism that requires upframeshift protein 1 (UPF1). This study demonstrates that human UPF1 exerts protective effects in a rat paralysis model based on the amyotrophic lateral sclerosis (ALS)-associated protein, TDP-43 (transactive response DNA-binding protein 43 kDa). An adeno-associated virus vector (AAV9) was used to express TDP-43 throughout the spinal cord of rats, inducing reproducible limb paralysis, to recapitulate the paralysis in ALS. We selected UPF1 for therapeutic testing based on a genetic screen in yeast. The expression of human TDP-43 or human UPF1 in the spinal cord was titrated to less than twofold over the respective endogenous level. AAV9 human mycUPF1 clearly improved overall motor scores in rats also expressing TDP-43. The gene therapy effect of mycUPF1 was specific and reproducible compared with groups receiving either empty vector or green fluorescent protein vector controls. The gene therapy maintained forelimb motor function in rats that would otherwise become quadriplegic. This work helps validate UPF1 as a novel therapeutic for ALS and other TDP-43-related diseases and may implicate UPF1 and NMD involvement in the underlying disease mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006; 351: 602–611.

    Article  CAS  Google Scholar 

  2. Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 2007; 61: 427–434.

    Article  CAS  Google Scholar 

  3. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006; 314: 130–133.

    Article  CAS  Google Scholar 

  4. Chen-Plotkin AS, Lee VM, Trojanowski JQ . TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 2010; 6: 211–220.

    Article  CAS  Google Scholar 

  5. Tatom JB, Wang DB, Dayton RD, Skalli O, Hutton ML, Dickson DW et al. Mimicking aspects of frontotemporal lobar degeneration and Lou Gehrig’s disease in rats via TDP-43 overexpression. Mol. Ther. 2009; 17: 607–613.

    Article  CAS  Google Scholar 

  6. Wang DB, Dayton RD, Henning PP, Cain CD, Zhao LR, Schrott LM et al. Expansive gene transfer to the rat CNS and amyotrophic lateral sclerosis relevant sequelae when TDP-43 is overexpressed. Mol Ther 2010; 18: 2064–2074.

    Article  CAS  Google Scholar 

  7. Dayton RD, Gitcho MA, Orchard EA, Wilson JD, Wang DB, Cain CD et al. Selective forelimb impairment in rats expressing a pathological TDP-43 25 kDa C-terminal fragment to mimic amyotrophic lateral sclerosis. Mol Ther 2013; 21: 1324–1334.

    Article  CAS  Google Scholar 

  8. Barmada SJ, Skibinski G, Korb E, Rao EJ, Wu JY, Finkbeiner S . Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 2010; 30: 639–649.

    Article  CAS  Google Scholar 

  9. Wang DB, Gitcho MA, Kraemer BC, Klein RL . Genetic strategies to study TDP-43 in rodents and to develop preclinical therapeutics for amyotrophic lateral sclerosis. Eur J Neurosci 2011; 34: 1179–1188.

    Article  Google Scholar 

  10. Armakola M, Higgins MJ, Figley MD, Barmada SJ, Scarborough EA, Diaz Z et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet 2012; 44: 1302–1309.

    Article  CAS  Google Scholar 

  11. Hebron M, Chen W, Miessau MJ, Lonskava I, Moussa CE . Parkin reverses TDP-43-induced cell death and failure of amino acid homeostasis. J Neurochem. 2013; 129: 305–361.

    Google Scholar 

  12. Kim HJ, Raphael AR, Ladow ES, McGurk L, Weber RA, Trojanowski JQ et al. Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet. 2013; 46: 152–160.

    Article  Google Scholar 

  13. Vaccaro A, Patten SA, Ciura S, Maios C, Therrien M, Drapeau P et al. Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio. PLoS One 2012; 7: e42117.

    Article  CAS  Google Scholar 

  14. Wang IF, Guo BS, Liu YC, Wu CC, Yang CH, Tsai KJ et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci USA 2012; 109: 15024–15029.

    Article  CAS  Google Scholar 

  15. Karam R, Wengrod J, Gardner LB, Wilkinson MF . Regulation of nonsense-mediated mRNA decay: implications for physiology and disease. Biochim Biophys Acta 2013; 1829: 624–633.

    Article  CAS  Google Scholar 

  16. Popp MW, Maquat LE . Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev Genet 2013; 47: 139–165.

    Article  CAS  Google Scholar 

  17. Nguyen LS, Wilkinson MF, Gecz J . Nonsense-mediated mRNA decay: Inter-individual variability and human disease. Neurosci. Biobehav. Rev. 2013; S0149-7634: 270–274.

    Google Scholar 

  18. Barmada S, Ju S, Arjun A, Batarse A, Qu H, Huang EE, et al. RNA helicases ameliorate ALS- and FTD related neurotoxicity. Ann Neurol 2013; 74: S93.

    Google Scholar 

  19. Ju S, Tardiff DF, Han H, Divya K, Zhong Q, Maquat LE et al. A yeast model of FUS/TLS-dependent cytotoxicity. PLoS Biol 2011; 9: e1001052.

    Article  CAS  Google Scholar 

  20. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK . Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 2009; 27: 59–65.

    Article  CAS  Google Scholar 

  21. Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 2011; 14: 459–468.

    Article  CAS  Google Scholar 

  22. Klein RL, Hamby ME, Hirko AC, Gong Y, Wang S, Hughes JA et al. Dose and promoter effects of adeno-associated viral vector for green fluorescent protein expression in the rat brain. Exp Neurol 2002; 176: 66–74.

    Article  CAS  Google Scholar 

  23. Loeb JE, Cordier WS, Harris ME, Weitzman MD, Hope TJ . Enhanced expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis virus posttranscriptional regulatory element: implications for gene therapy. Hum Gene Ther 1995; 10: 2295–2305.

    Article  Google Scholar 

  24. Gitcho MA, Bigio EH, Mishra M, Johnson N, Weintraub S, Mesulam M et al. TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy. Acta Neuropathol 2009; 118: 633–645.

    Article  CAS  Google Scholar 

  25. Wils H, Kleinberger G, Janssens J, Pereson S, Joris G, Cuijt I et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 2010; 107: 3858–3863.

    Article  CAS  Google Scholar 

  26. Wang HY, Wang IF, Bose J, Shen CK . Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 2004; 83: 130–139.

    Article  CAS  Google Scholar 

  27. Avendaño-Vázquez SE, Dhir A, Bembich S, Buratti E, Proudfood N, Baralle FE . Autoregulation of TDP-43 mRNA levels involves interplay between transcription, splicing, and alternative polyA site selection. Genes Dev 2012; 26: 1679–1684.

    Article  Google Scholar 

  28. Ayala YM, De Conti L, Avendaño-Vázquez SE, Dhir A, Romano M, D’Ambrogio A et al. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J 2011; 30: 277–288.

    Article  CAS  Google Scholar 

  29. Wengrod J, Martin L, Wang D, Frischmeyer-Guerrerio P, Dietz HC, Gardner LB . Inhibition of nonsense-mediated RNA decay activates autophagy. Mol Cell Biol 2013; 33: 2128–2135.

    Article  CAS  Google Scholar 

  30. Kervestin S, Jacobson A . NMD: a multifaceted response to premature translational termination. Nat Rev Mol Cell Biol 2012; 13: 700–712.

    Article  CAS  Google Scholar 

  31. Isken O, Kim YK, Hosoda N, Mayeur GL, Hershey JW, Maquat LE . Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 2008; 133: 314–327.

    Article  CAS  Google Scholar 

  32. Kurosaki T, Li W, Hoque M, Popp M.W.-L., Ermolenko DN, Tian B, Maquat LE . A post-translational regulatory switch on UPF1 controls targeted mRNA degradation. Genes Dev 2014; 28: 1900–1916.

    Article  CAS  Google Scholar 

  33. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM . Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 2004; 78: 6381–6388.

    Article  CAS  Google Scholar 

  34. Dayton RD, Wang DB, Klein RL . The advent of AAV9 expands applications for brain and spinal cord gene delivery. Expert Opin Biol Ther 2012; 12: 757–766.

    Article  CAS  Google Scholar 

  35. Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 2009; 17: 1187–1196.

    Article  CAS  Google Scholar 

  36. Fu H, Dirosario J, Killedar S, Zaraspe K, McCarty DM . Correction of neurological disease of mucopolysaccharidosis IIIB in adult mice by rAAV9 trans-blood–brain barrier gene delivery. Mol Ther 2011; 19: 1025–1033.

    Article  CAS  Google Scholar 

  37. Weinberg MS, Samulski RJ, McCown TJ . Adeno-associated virus (AAV) gene therapy for neurological disease. Neuropharmacology 2013; 69: 82–88.

    Article  CAS  Google Scholar 

  38. Gong C, Kim YK, Woeller CF, Tang Y, Maquat LE . SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev 2009; 23: 54–66.

    Article  CAS  Google Scholar 

  39. Kurosaki T, Maquat LE . Rules that govern UPF1 binding to mRNA 3’UTRs. Proc Natl Acad Sci USA 2013; 110: 3357–3362.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sami Barmada and Stacie Weninger for advice and insightful discussion, Ellie Hall and J Steven Alexander for technical advice and Mychal Grames, Adam Richard, Sarah Lopez, Christopher Jackson and Isaac Hardman for technical assistance. This study was supported by the Fidelity Biosciences Research Initiative (RLK), Karyopharm Therapeutics Inc. (RLK) and NIH R01 GM059614 (LEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R L Klein.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, K., Dayton, R., Orchard, E. et al. Preservation of forelimb function by UPF1 gene therapy in a rat model of TDP-43-induced motor paralysis. Gene Ther 22, 20–28 (2015). https://doi.org/10.1038/gt.2014.101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.101

This article is cited by

Search

Quick links