Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Engineered stem cell-derived microglia as therapeutic vehicle for experimental autoimmune encephalomyelitis

Abstract

Inflammation can be prevented in most inflammatory brain diseases, while tissue repair of the lesioned central nervous system (CNS) is still a major challenge. The CNS is difficult to access for protein therapeutics due to the blood–brain barrier. Here, we show that genetically engineered embryonic stem cell-derived microglia (ESdM) are a suitable therapeutic vehicle for neurotrophin-3 (NT3) in experimental autoimmune encephalomyelitis (EAE). The intravenously transplanted ESdM migrated into the inflammatory CNS lesions and engrafted there as microglial cells. EAE afflicted mice treated with ESdM that were genetically modified to express NT3 showed stable recovery from disease symptoms. The NT3-transduced ESdM created an anti-inflammatory cytokine milieu in the spinal cord and promoted neuronal sprouting. Furthermore, mice treated with NT3-transduced ESdM showed less axonal injury and reduced demyelination. Thus, genetically modified ESdM represent a suitable tool to introduce therapeutic neuroprotective and repair-promoting proteins into the CNS in neuroinflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Priller J, Flugel A, Wehner T, Boentert M, Haas CA, Prinz M et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 2001; 7: 1356–1361.

    Article  CAS  Google Scholar 

  2. Pardridge WM . Drug and gene delivery to the brain: the vascular route. Neuron 2002; 36: 555–558.

    Article  CAS  PubMed  Google Scholar 

  3. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 2009; 6: e1000113.

    Article  PubMed  Google Scholar 

  4. London A, Itskovich E, Benhar I, Kalchenko V, Mack M, Jung S et al. Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J Exp Med 2011; 208: 23–39.

    Article  CAS  PubMed  Google Scholar 

  5. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG . Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009; 29: 13435–13444.

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H . TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 2007; 4: e124.

    Article  PubMed  Google Scholar 

  7. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012; 336: 86–90.

    Article  CAS  Google Scholar 

  8. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330: 841–845.

    Article  CAS  PubMed  Google Scholar 

  9. Alliot F, Godin I, Pessac B . Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 1999; 117: 145–152.

    Article  CAS  Google Scholar 

  10. Chan WY, Kohsaka S, Rezaie P . The origin and cell lineage of microglia: new concepts. Brain Res Rev 2007; 53: 344–354.

    Article  CAS  Google Scholar 

  11. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM . Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 2011; 14: 1142–1149.

    Article  CAS  Google Scholar 

  12. Ransohoff RM . Microglia and monocytes: ‘tis plain the twain meet in the brain. Nat Neurosci 2011; 14: 1098–1100.

    Article  CAS  Google Scholar 

  13. Tsuchiya T, Park KC, Toyonaga S, Yamada SM, Nakabayashi H, Nakai E et al. Characterization of microglia induced from mouse embryonic stem cells and their migration into the brain parenchyma. J Neuroimmunol 2005; 160: 210–218.

    Article  CAS  Google Scholar 

  14. Napoli I, Kierdorf K, Neumann H . Microglial precursors derived from mouse embryonic stem cells. Glia 2009; 57: 1660–1671.

    Article  Google Scholar 

  15. Beutner C, Roy K, Linnartz B, Napoli I, Neumann H . Generation of microglial cells from mouse embryonic stem cells. Nat Protoc 2010; 5: 1481–1494.

    Article  CAS  Google Scholar 

  16. Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD . Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000; 18: 675–679.

    Article  CAS  Google Scholar 

  17. Keller G, Kennedy M, Papayannopoulou T, Wiles MV . Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 1993; 13: 473–486.

    Article  CAS  PubMed  Google Scholar 

  18. Prinz M, Priller J, Sisodia SS, Ransohoff RM . Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 2011; 13: 1227–1235.

    Article  Google Scholar 

  19. Zhou L, Baumgartner BJ, Hill-Felberg SJ, McGowen LR, Shine HD . Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. J Neurosci 2003; 23: 1424–1431.

    Article  CAS  Google Scholar 

  20. Martino G, Franklin RJ, Baron Van Evercooren A, Kerr DA . Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol 2010; 6: 247–255.

    Article  Google Scholar 

  21. Payne N, Siatskas C, Barnard A, Bernard CC . The prospect of stem cells as multi-faceted purveyors of immune modulation, repair and regeneration in multiple sclerosis. Curr Stem Cell Res Ther 2011; 6: 50–62.

    Article  CAS  Google Scholar 

  22. Payne N, Siatskas C, Bernard CC . The promise of stem cell and regenerative therapies for multiple sclerosis. J Autoimmun 2008; 31: 288–294.

    Article  CAS  Google Scholar 

  23. Ben-Hur T, van Heeswijk RB, Einstein O, Aharonowiz M, Xue R, Frost EE et al. Serial in vivo MR tracking of magnetically labeled neural spheres transplanted in chronic EAE mice. Magn Reson Med 2007; 57: 164–171.

    Article  Google Scholar 

  24. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 2005; 436: 266–271.

    Article  CAS  PubMed  Google Scholar 

  25. Franklin RJ, Ffrench-Constant C . Stem cell treatments and multiple sclerosis. Bmj 2010; 340: c1387.

    Article  Google Scholar 

  26. Inamdar M, Koch T, Rapoport R, Dixon JT, Probolus JA, Cram E et al. Yolk sac-derived murine macrophage cell line has a counterpart during ES cell differentiation. Dev Dyn 1997; 210: 487–497.

    Article  CAS  Google Scholar 

  27. Bertrand JY, Jalil A, Klaine M, Jung S, Cumano A, Godin I . Three pathways to mature macrophages in the early mouse yolk sac. Blood 2005; 106: 3004–3011.

    Article  CAS  Google Scholar 

  28. Hanisch UK, Kettenmann H . Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10: 1387–1394.

    Article  CAS  Google Scholar 

  29. Neumann H . Microglia: a cellular vehicle for CNS gene therapy. J Clin Invest 2006; 116: 2857–2860.

    Article  CAS  PubMed  Google Scholar 

  30. Geissmann F, Jung S, Littman DR . Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003; 19: 71–82.

    Article  CAS  PubMed  Google Scholar 

  31. Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA et al. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol 2007; 308: 232–246.

    Article  CAS  Google Scholar 

  32. Caggiula M, Batocchi AP, Frisullo G, Angelucci F, Patanella AK, Sancricca C et al. Neurotrophic factors and clinical recovery in relapsing-remitting multiple sclerosis. Scand J Immunol 2005; 62: 176–182.

    Article  CAS  Google Scholar 

  33. Hohlfeld R, Kerschensteiner M, Stadelmann C, Lassmann H, Wekerle H . The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. Neurol Sci 2006; 27 (Suppl 1): S1–S7.

    Article  Google Scholar 

  34. Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME . Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 1994; 367: 170–173.

    Article  CAS  Google Scholar 

  35. Taylor L, Jones L, Tuszynski MH, Blesch A . Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J Neurosci 2006; 26: 9713–9721.

    Article  CAS  Google Scholar 

  36. Hammarberg H, Lidman O, Lundberg C, Eltayeb SY, Gielen AW, Muhallab S et al. Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 2000; 20: 5283–5291.

    Article  CAS  Google Scholar 

  37. Chen C, Zhou XF, Rush RA . Neurotrophin-3 and trkC-immunoreactive neurons in rat dorsal root ganglia correlate by distribution and morphology. Neurochem Res 1996; 21: 809–814.

    Article  CAS  Google Scholar 

  38. Lamballe F, Smeyne RJ, Barbacid M . Developmental expression of trkC, the neurotrophin-3 receptor, in the mammalian nervous system. J Neurosci 1994; 14: 14–28.

    Article  CAS  Google Scholar 

  39. Kannan Y, Usami K, Okada M, Shimizu S, Matsuda H . Nerve growth factor suppresses apoptosis of murine neutrophils. Biochem Biophys Res Commun 1992; 186: 1050–1056.

    Article  CAS  Google Scholar 

  40. Memberg SP, Hall AK . Proliferation, differentiation, and survival of rat sensory neuron precursors in vitro require specific trophic factors. Mol Cell Neurosci 1995; 6: 323–335.

    Article  CAS  Google Scholar 

  41. Carson MJ . Microglia as liaisons between the immune and central nervous systems: functional implications for multiple sclerosis. Glia 2002; 40: 218–231.

    Article  PubMed  Google Scholar 

  42. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005; 11: 146–152.

    Article  CAS  Google Scholar 

  43. Platten M, Steinman L . Multiple sclerosis: trapped in deadly glue. Nat Med 2005; 11: 252–253.

    Article  CAS  Google Scholar 

  44. Olah M, Amor S, Brouwer N, Vinet J, Eggen B, Biber K et al. Identification of a microglia phenotype supportive of remyelination. Glia 2012; 60: 306–321.

    Article  Google Scholar 

  45. Wang Y, Neumann H . Alleviation of neurotoxicity by microglial human Siglec-11. J Neurosci 2010; 30: 3482–3488.

    Article  CAS  Google Scholar 

  46. Dann A, Poeck H, Croxford AL, Gaupp S, Kierdorf K, Knust M et al. Cytosolic RIG-I-like helicases act as negative regulators of sterile inflammation in the CNS. Nat Neurosci 2012; 15: 98–106.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Hertie-Foundation and the Deutsche Forschungsgemeinschaft (FOR1336, SFB704, KFO177). We thank Jessica Schumacher and Rita Hass for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Neumann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beutner, C., Lepperhof, V., Dann, A. et al. Engineered stem cell-derived microglia as therapeutic vehicle for experimental autoimmune encephalomyelitis. Gene Ther 20, 797–806 (2013). https://doi.org/10.1038/gt.2012.100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.100

Keywords

This article is cited by

Search

Quick links