Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lentiviral-mediated administration of IL-25 in the CNS induces alternative activation of microglia

Abstract

Interleukin-25 (IL-25) is the only anti-inflammatory cytokine of the IL-17 family, and it has been shown to be efficacious in inhibiting neuroinflammation. Known for its effects on cells of the adaptive immune system, it has been more recently described to be effective also on cells of the innate immune system, namely macrophages. We used a lentiviral-mediated gene therapy approach to deliver IL-25 to the central nervous system (CNS) in two mouse models of neuroinflammation, entorhinal cortex lesion and experimental autoimmune encephalomyelitis. In both, we found that IL-25 gene therapy was able to modulate CNS myeloid cells, either infiltrating macrophages or resident microglia, towards an anti-inflammatory, tissue-protective phenotype, as testified by the increase in markers such as Arginase-1 (Arg1), Mannose receptor 1 (CD206) and Chitinase 3-like 3 (Ym1). As a consequence, neuroinflammation was partly inhibited and the CNS protected from immune-mediated damage. To our knowledge, this is the first example of M2 shift (alternative activation) induced in vivo on CNS-resident myeloid cells by gene therapy, and may constitute a promising strategy to investigate the potential role of protective microglia in neurological disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Moseley TA, Haudenschild DR, Rose L, Reddi AH . Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003; 14: 155–174.

    Article  CAS  PubMed  Google Scholar 

  2. Ikeda K, Nakajima H, Suzuki K, Kagami S, Hirose K, Suto A et al. Mast cells produce interleukin-25 upon Fc epsilon RI-mediated activation. Blood 2003; 101: 3594–3596.

    Article  CAS  PubMed  Google Scholar 

  3. Kang CM, Jang AS, Ahn MH, Shin JA, Kim JH, Choi YS et al. Interleukin-25 and interleukin-13 production by alveolar macrophages in response to particles. Am J Respir Cell Mol Biol 2005; 33: 290–296.

    Article  CAS  PubMed  Google Scholar 

  4. Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 2007; 204: 1837–1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wong CK, Cheung PF, Ip WK, Lam CW . Interleukin-25-induced chemokines and interleukin-6 release from eosinophils is mediated by p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and nuclear factor-kappaB. Am J Respir Cell Mol Biol 2005; 33: 186–194.

    Article  CAS  PubMed  Google Scholar 

  6. Zaph C, Du Y, Saenz SA, Nair MG, Perrigoue JG, Taylor BC et al. Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J Exp Med 2008; 205: 2191–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Angkasekwinai P, Park H, Wang YH, Chang SH, Corry DB, Liu YJ et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J Exp Med 2007; 204: 1509–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001; 15: 985–995.

    Article  CAS  PubMed  Google Scholar 

  9. Kleinschek MA, Owyang AM, Joyce-Shaikh B, Langrish CL, Chen Y, Gorman DM et al. IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 2007; 204: 161–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tamachi T, Maezawa Y, Ikeda K, Kagami S, Hatano M, Seto Y et al. IL-25 enhances allergic airway inflammation by amplifying a TH2 cell-dependent pathway in mice. J Allergy Clin Immunol 2006; 118: 606–614.

    Article  CAS  PubMed  Google Scholar 

  11. Cao Q, Wang C, Zheng D, Wang Y, Lee VW, Wang YM et al. IL-25 induces M2 macrophages and reduces renal injury in proteinuric kidney disease. J Am Soc Nephrol 2011; 22: 1229–1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caruso R, Stolfi C, De Nitto D, Pallone F, Monteleone G . The dual role of interleukin-25 in the control of immune-mediated pathologies. Curr Mol Med 2011; 11: 26–30.

    Article  CAS  PubMed  Google Scholar 

  13. Dolgachev V, Petersen BC, Budelsky AL, Berlin AA, Lukacs NW . Pulmonary IL-17E (IL-25) production and IL-17RB+ myeloid cell-derived Th2 cytokine production are dependent upon stem cell factor-induced responses during chronic allergic pulmonary disease. J Immunol 2009; 183: 5705–5715.

    Article  CAS  PubMed  Google Scholar 

  14. Rizzo A, Monteleone I, Fina D, Stolfi C, Caruso R, Fantini MC et al. Inhibition of colitis by IL-25 associates with induction of alternatively activated macrophages. Inflamm Bowel Dis 2011; 18: 449–459.

    Article  PubMed  Google Scholar 

  15. Caruso R, Stolfi C, Sarra M, Rizzo A, Fantini MC, Pallone F et al. Inhibition of monocyte-derived inflammatory cytokines by IL-25 occurs via p38 Map kinase-dependent induction of Socs-3. Blood 2009; 113: 3512–3519.

    Article  CAS  PubMed  Google Scholar 

  16. Stolfi C, Caruso R, Franze E, Sarra M, De Nitto D, Rizzo A et al. Interleukin-25 fails to activate STAT6 and induce alternatively activated macrophages. Immunology 2011; 132: 66–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biswas SK, Mantovani A . Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010; 11: 889–896.

    Article  CAS  PubMed  Google Scholar 

  18. Gordon S, Martinez FO . Alternative activation of macrophages: mechanism and functions. Immunity 2010; 32: 593–604.

    Article  CAS  PubMed  Google Scholar 

  19. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A . Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002; 23: 549–555.

    Article  CAS  PubMed  Google Scholar 

  20. Adams DO, Hamilton TA . The cell biology of macrophage activation. Annu Rev Immunol 1984; 2: 283–318.

    Article  CAS  PubMed  Google Scholar 

  21. Hamilton T . Molecular basis of macrophage activation: from gene expression to phenotypic diversity. In: Lewis BBCE, (ed). In The Macrophage 2nd edn. Oxford University Press: Oxford, UK, 2002.

    Google Scholar 

  22. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG . Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009; 29: 13435–13444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mantovani A, Allavena P, Sica A, Balkwill F . Cancer-related inflammation. Nature 2008; 454: 436–444.

    Article  CAS  PubMed  Google Scholar 

  24. Mosser DM, Edwards JP . Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8: 958–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stein M, Keshav S, Harris N, Gordon S . Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 1992; 176: 287–292.

    Article  CAS  PubMed  Google Scholar 

  26. Lassmann H, Bruck W, Lucchinetti CF . The immunopathology of multiple sclerosis: an overview. Brain Pathol 2007; 17: 210–218.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fenn AM, Henry CJ, Huang Y, Dugan A, Godbout JP . Lipopolysaccharide-induced interleukin (IL)-4 receptor-alpha expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice. Brain Behav Immun 2012; 26: 776–777.

    Article  Google Scholar 

  28. Henkel JS, Beers DR, Zhao W, Appel SH . Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol 2009; 4: 389–398.

    Article  PubMed  Google Scholar 

  29. Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P . Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol 2009; 210: 3–12.

    Article  CAS  PubMed  Google Scholar 

  30. Salemi J, Obregon DF, Cobb A, Reed S, Sadic E, Jin J et al. Flipping the switches: CD40 and CD45 modulation of microglial activation states in HIV associated dementia (HAD). Mol Neurodegener 2011; 6: 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnston H, Boutin H, Allan SM . Assessing the contribution of inflammation in models of Alzheimer′s disease. Biochem Soc Trans 2011; 39: 886–890.

    Article  CAS  PubMed  Google Scholar 

  32. Perry VH, Nicoll JA, Holmes C . Microglia in neurodegenerative disease. Nat Rev Neurol 2010; 6: 193–201.

    Article  PubMed  Google Scholar 

  33. Polazzi E, Monti B . Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 2010; 92: 293–315.

    Article  PubMed  Google Scholar 

  34. Schwartz M, Butovsky O, Bruck W, Hanisch UK . Microglial phenotype: is the commitment reversible? Trends Neurosci 2006; 29: 68–74.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Z, Zhang ZY, Schittenhelm J, Wu Y, Meyermann R, Schluesener HJ . Parenchymal accumulation of CD163+ macrophages/microglia in multiple sclerosis brains. J Neuroimmunol 2011; 237: 73–79.

    Article  CAS  PubMed  Google Scholar 

  36. Martino G, Furlan R, Comi G, Adorini L . The ependymal route to the CNS: an emerging gene-therapy approach for MS. Trends Immunol 2001; 22: 483–490.

    Article  CAS  PubMed  Google Scholar 

  37. Butti E, Bergami A, Recchia A, Brambilla E, Del Carro U, Amadio S et al. IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene Therapy 2008; 15: 504–515.

    Article  CAS  PubMed  Google Scholar 

  38. Furlan R, Brambilla E, Ruffini F, Poliani PL, Bergami A, Marconi PC et al. Intrathecal delivery of IFN-gamma protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. J Immunol 2001; 167: 1821–1829.

    Article  CAS  PubMed  Google Scholar 

  39. Furlan R, Pluchino S, Marconi PC, Martino G . Cytokine gene delivery into the central nervous system using intrathecally injected nonreplicative viral vectors. Methods Mol Biol 2003; 215: 279–289.

    CAS  PubMed  Google Scholar 

  40. Furlan R, Poliani PL, Galbiati F, Bergami A, Grimaldi LM, Comi G et al. Central nervous system delivery of interleukin 4 by a nonreplicative herpes simplex type 1 viral vector ameliorates autoimmune demyelination. Hum Gene Ther 1998; 9: 2605–2617.

    Article  CAS  PubMed  Google Scholar 

  41. Millward JM, Caruso M, Campbell IL, Gauldie J, Owens T . IFN-gamma-induced chemokines synergize with pertussis toxin to promote T cell entry to the central nervous system. J Immunol 2007; 178: 8175–8182.

    Article  CAS  PubMed  Google Scholar 

  42. Millward JM, Lobner M, Wheeler RD, Owens T . Inflammation in the central nervous system and Th17 responses are inhibited by IFN-gamma-Induced IL-18 binding protein. J Immunol 2010; 185: 2458–2466.

    Article  CAS  PubMed  Google Scholar 

  43. Jensen MB, Hegelund IV, Poulsen FR, Owens T, Zimmer J, Finsen B . Microglial reactivity correlates to the density and the myelination of the anterogradely degenerating axons and terminals following perforant path denervation of the mouse fascia dentata. Neuroscience 1999; 93: 507–518.

    Article  CAS  PubMed  Google Scholar 

  44. Khorooshi R, Babcock AA, Owens T . NF-kappaB-driven STAT2 and CCL2 expression in astrocytes in response to brain injury. J Immunol 2008; 181: 7284–7291.

    Article  CAS  PubMed  Google Scholar 

  45. Khorooshi R, Owens T . Injury-induced type I IFN signaling regulates inflammatory responses in the central nervous system. J Immunol 2010; 185: 1258–1264.

    Article  CAS  PubMed  Google Scholar 

  46. Wirenfeldt M, Dissing-Olesen L, Anne Babcock A, Nielsen M, Meldgaard M, Zimmer J et al. Population control of resident and immigrant microglia by mitosis and apoptosis. Am J Pathol 2007; 171: 617–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Furlan R, Cuomo C, Martino G . Animal models of multiple sclerosis. Methods Mol Biol 2009; 549: 157–173.

    Article  CAS  PubMed  Google Scholar 

  48. Rickel EA, Siegel LA, Yoon BR, Rottman JB, Kugler DG, Swart DA et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J Immunol 2008; 181: 4299–4310.

    Article  CAS  PubMed  Google Scholar 

  49. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM . Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 2011; 14: 1142–1149.

    Article  CAS  PubMed  Google Scholar 

  50. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L . Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 2000; 25: 217–222.

    Article  CAS  PubMed  Google Scholar 

  51. Amadio S, Pluchino S, Brini E, Morana P, Guerriero R, Boneschi FM et al. Motor evoked potentials in a mouse model of chronic multiple sclerosis. Muscle Nerve 2006; 33: 265–273.

    Article  PubMed  Google Scholar 

  52. Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 2003; 422: 688–694.

    Article  CAS  PubMed  Google Scholar 

  53. Babcock AA, Kuziel WA, Rivest S, Owens T . Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 2003; 23: 7922–7930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Babcock AA, Wirenfeldt M, Holm T, Nielsen HH, Dissing-Olesen L, Toft-Hansen H et al. Toll-like receptor 2 signaling in response to brain injury: an innate bridge to neuroinflammation. J Neurosci 2006; 26: 12826–12837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to P Brown for helpful discussion; to Prof. L Naldini for providing the lentiviral backbone; to A Gatta, E Butti, D Dræby, M Rytz Hansen and P Nyborg Nielsen for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Furlan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

This work has been supported by FISM (RF), Danish Agency for Science, Technology and Innovation (TO), Lundbeck Foundation (ML) and MSIF Du Pré Grant Fellow (CM). CM conducted this study as partial fulfillment of her PhD in Molecular Medicine, Program in Experimental Neurology, San Raffaele University, Milan, Italy.

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiorino, C., Khorooshi, R., Ruffini, F. et al. Lentiviral-mediated administration of IL-25 in the CNS induces alternative activation of microglia. Gene Ther 20, 487–496 (2013). https://doi.org/10.1038/gt.2012.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.58

Keywords

This article is cited by

Search

Quick links