Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lentiviral vectors and cardiovascular diseases: a genetic tool for manipulating cardiomyocyte differentiation and function

Abstract

Engineered recombinant viral vectors are a powerful tool for vehiculating genetic information into mammalian cells. Because of their ability to infect both dividing and non-dividing cells with high efficiency, lentiviral vectors have gained particular interest for basic research and preclinical studies in the cardiovascular field. We review here the major applications for lentiviral-vector technology in the cardiovascular field: we will discuss their use in trailing gene expression during the induction of differentiation, in protocols for the isolation of cardiac cells and in the tracking of cardiac cells after transplantation in vivo; we will also describe lentivirally-mediated gene delivery uses, such as the induction of a phenotype of interest in a target cell or the treatment of cardiovascular diseases. In addition, a section of the review will be dedicated to reprogramming approaches, focusing attention on the generation of pluripotent stem cells and on transdifferentiation, two emerging strategies for the production of cardiac myocytes from human cells and for the investigation of human diseases. Finally, in order to give a perspective on their future clinical use we will critically discuss advantages and disadvantages of lentivirus-based strategies for the treatment of cardiovascular diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Lyon AR, Sato M, Hajjar RJ, Samulski RJ, Harding SE . Gene therapy: targeting the myocardium. Heart 2008; 94: 89–99.

    Article  CAS  PubMed  Google Scholar 

  2. Blomer U, Gruh I, Witschel H, Haverich A, Martin U . Shuttle of lentiviral vectors via transplanted cells in vivo. Gene Therapy 2005; 12: 67–74.

    Article  CAS  PubMed  Google Scholar 

  3. Bonci D, Cittadini A, Latronico MV, Borello U, Aycock JK, Drusco A et al. Advanced′ generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Therapy 2003; 10: 630–636.

    Article  CAS  PubMed  Google Scholar 

  4. Naldini L . Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 1998; 9: 457–463.

    Article  CAS  PubMed  Google Scholar 

  5. Naldini L, Blomer U, Gage FH, Trono D, Verma IM . Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996; 93: 11382–11388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sakoda T, Kasahara N, Hamamori Y, Kedes L . A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J Mol Cell Cardiol 1999; 31: 2037–2047.

    Article  CAS  PubMed  Google Scholar 

  7. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  9. Matrai J, Chuah MK, VandenDriessche T . Recent advances in lentiviral vector development and applications. Mol Ther 2010; 18: 477–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sinn PL, Sauter SL, McCray Jr PB . Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors—design, biosafety, and production. Gene Therapy 2005; 12: 1089–1098.

    Article  CAS  PubMed  Google Scholar 

  11. Gai H, Leung EL, Costantino PD, Aguila JR, Nguyen DM, Fink LM et al. Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol Int 2009; 33: 1184–1193.

    Article  CAS  PubMed  Google Scholar 

  12. Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 2008; 118: 507–517.

    Article  PubMed  Google Scholar 

  13. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  14. Laflamme MA, Murry CE . Heart regeneration. Nature 2011; 473: 326–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murry CE, Keller G . Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008; 132: 661–680.

    Article  CAS  PubMed  Google Scholar 

  16. Leschik J, Stefanovic S, Brinon B, Puceat M . Cardiac commitment of primate embryonic stem cells. Nat Protoc 2008; 3: 1381–1387.

    Article  CAS  PubMed  Google Scholar 

  17. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 2008; 453: 524–528.

    Article  CAS  PubMed  Google Scholar 

  18. Hidaka K, Lee JK, Kim HS, Ihm CH, Iio A, Ogawa M et al. Chamber-specific differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells. FASEB J 2003; 17: 740–742.

    Article  CAS  PubMed  Google Scholar 

  19. Klug MG, Soonpaa MH, Koh GY, Field LJ . Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 1996; 98: 216–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kolossov E, Fleischmann BK, Liu Q, Bloch W, Viatchenko-Karpinski S, Manzke O et al. Functional characteristics of ES cell-derived cardiac precursor cells identified by tissue-specific expression of the green fluorescent protein. J Cell Biol 1998; 143: 2045–2056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Muller M, Fleischmann BK, Selbert S, Ji GJ, Endl E, Middeler G et al. Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J 2000; 14: 2540–2548.

    Article  CAS  PubMed  Google Scholar 

  22. Schroeder M, Niebruegge S, Werner A, Willbold E, Burg M, Ruediger M et al. Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control. Biotechnol Bioeng 2005; 92: 920–933.

    Article  CAS  PubMed  Google Scholar 

  23. Zwaka TP, Thomson JA . Homologous recombination in human embryonic stem cells. Nat Biotechnol 2003; 21: 319–321.

    Article  CAS  PubMed  Google Scholar 

  24. Bai X, Yan Y, Coleman M, Wu G, Rabinovich B, Seidensticker M et al. Tracking long-term survival of intramyocardially delivered human adipose tissue-derived stem cells using bioluminescence imaging. Mol Imaging Biol 2011; 13: 633–645.

    Article  PubMed  Google Scholar 

  25. Huber I, Itzhaki I, Caspi O, Arbel G, Tzukerman M, Gepstein A et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J 2007; 21: 2551–2563.

    Article  CAS  PubMed  Google Scholar 

  26. Kita-Matsuo H, Barcova M, Prigozhina N, Salomonis N, Wei K, Jacot JG et al. Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes. PLoS One 2009; 4: e5046.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gallo P, Grimaldi S, Latronico MV, Bonci D, Pagliuca A, Ausoni S et al. A lentiviral vector with a short troponin-I promoter for tracking cardiomyocyte differentiation of human embryonic stem cells. Gene Therapy 2008; 15: 161–170.

    Article  CAS  PubMed  Google Scholar 

  28. Gruh I, Wunderlich S, Winkler M, Schwanke K, Heinke J, Blomer U et al. Human CMV immediate-early enhancer: a useful tool to enhance cell-type-specific expression from lentiviral vectors. J Gene Med 2008; 10: 21–32.

    Article  CAS  PubMed  Google Scholar 

  29. Altomare C, Barile L, Marangoni S, Rocchetti M, Alemanni M, Mostacciuolo G et al. Caffeine-induced Ca(2+) signaling as an index of cardiac progenitor cells differentiation. Basic Res Cardiol 2010; 105: 737–749.

    Article  CAS  PubMed  Google Scholar 

  30. Rizzi R, Di Pasquale E, Portararo P, Papait R, Cattaneo P, Latronico MV et al. Post-natal cardiomyocytes can generate iPS cells with an enhanced capacity toward cardiomyogenic re-differentation. Cell Death Differ 2012; e-pub ahead of print 20 January 2012; doi: 10.1038/cdd.2011.205.

    Article  CAS  Google Scholar 

  31. Bai X, Pinkernell K, Song YH, Nabzdyk C, Reiser J, Alt E . Genetically selected stem cells from human adipose tissue express cardiac markers. Biochem Biophys Res Commun 2007; 353: 665–671.

    Article  CAS  PubMed  Google Scholar 

  32. Barth AS, Kizana E, Smith RR, Terrovitis J, Dong P, Leppo MK et al. Lentiviral vectors bearing the cardiac promoter of the Na+-Ca2+ exchanger report cardiogenic differentiation in stem cells. Mol Ther 2008; 16: 957–964.

    Article  CAS  PubMed  Google Scholar 

  33. Higuchi K, Yoshimitsu M, Fan X, Guo X, Rasaiah VI, Yen J et al. Alpha-galactosidase A-Tat fusion enhances storage reduction in hearts and kidneys of Fabry mice. Mol Med 2010; 16: 216–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee CJ, Fan X, Guo X, Medin JA . Promoter-specific lentivectors for long-term, cardiac-directed therapy of Fabry disease. J Cardiol 2011; 57: 115–122.

    Article  PubMed  Google Scholar 

  35. Dong F, Khalil M, Kiedrowski M, O′Connor C, Petrovic E, Zhou X et al. Critical role for leukocyte hypoxia inducible factor-1alpha expression in post-myocardial infarction left ventricular remodeling. Circ Res 2010; 106: 601–610.

    Article  CAS  PubMed  Google Scholar 

  36. Gupta S, Maitra R, Young D, Gupta A, Sen S . Silencing the myotrophin gene by RNA interference leads to the regression of cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2009; 297: H627–H636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koyanagi M, Iwasaki M, Rupp S, Tedesco FS, Yoon CH, Boeckel JN et al. Sox2 transduction enhances cardiovascular repair capacity of blood-derived mesoangioblasts. Circ Res 2010; 106: 1290–1302.

    Article  CAS  PubMed  Google Scholar 

  38. Maioli M, Asara Y, Pintus A, Ninniri S, Bettuzzi S, Scaltriti M et al. Creating prodynorphin-expressing stem cells alerted for a high-throughput of cardiogenic commitment. Regen Med 2007; 2: 193–202.

    Article  CAS  PubMed  Google Scholar 

  39. Niwano K, Arai M, Koitabashi N, Watanabe A, Ikeda Y, Miyoshi H et al. Lentiviral vector-mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats. Mol Ther 2008; 16: 1026–1032.

    Article  CAS  PubMed  Google Scholar 

  40. Port JD, Bristow MR . beta-Adrenergic receptors, transgenic mice, and pharmacological model systems. Mol Pharmacol 2001; 60: 629–631.

    CAS  PubMed  Google Scholar 

  41. Hoshijima M . Gene therapy targeted at calcium handling as an approach to the treatment of heart failure. Pharmacol Ther 2005; 105: 211–228.

    Article  CAS  PubMed  Google Scholar 

  42. Eckle T, Kohler D, Lehmann R, El Kasmi K, Eltzschig HK . Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 2008; 118: 166–175.

    Article  CAS  PubMed  Google Scholar 

  43. del Monte F, Harding SE, Dec GW, Gwathmey JK, Hajjar RJ . Targeting phospholamban by gene transfer in human heart failure. Circulation 2002; 105: 904–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. del Monte F, Harding SE, Schmidt U, Matsui T, Kang ZB, Dec GW et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 1999; 100: 2308–2311.

    Article  CAS  PubMed Central  Google Scholar 

  45. Maurice JP, Hata JA, Shah AS, White DC, McDonald PH, Dolber PC et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery. J Clin Invest 1999; 104: 21–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shah AS, Lilly RE, Kypson AP, Tai O, Hata JA, Pippen A et al. Intracoronary adenovirus-mediated delivery and overexpression of the beta(2)-adrenergic receptor in the heart : prospects for molecular ventricular assistance. Circulation 2000; 101: 408–414.

    Article  CAS  PubMed  Google Scholar 

  47. Heine HL, Leong HS, Rossi FM, McManus BM, Podor TJ . Strategies of conditional gene expression in myocardium: an overview. Methods Mol Med 2005; 112: 109–154.

    Article  CAS  PubMed  Google Scholar 

  48. Vigna E, Cavalieri S, Ailles L, Geuna M, Loew R, Bujard H et al. Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol Ther 2002; 5: 252–261.

    Article  CAS  PubMed  Google Scholar 

  49. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  50. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  51. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  52. Hanna JH, Saha K, Jaenisch R . Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 2010; 143: 508–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stadtfeld M, Hochedlinger K . Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010; 24: 2239–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamanaka S . A fresh look at iPS cells. Cell 2009; 137: 13–17.

    Article  CAS  PubMed  Google Scholar 

  55. Josowitz R, Carvajal-Vergara X, Lemischka IR, Gelb BD . Induced pluripotent stem cell-derived cardiomyocytes as models for genetic cardiovascular disorders. Curr Opin Cardiol 2011; 26: 223–229.

    Article  PubMed  Google Scholar 

  56. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A et al. Disease-specific induced pluripotent stem cells. Cell 2008; 134: 877–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carvajal-Vergara X, Sevilla A, D′Souza SL, Ang YS, Schaniel C, Lee DF et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 2010; 465: 808–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 2010; 363: 1397–1409.

    Article  CAS  PubMed  Google Scholar 

  59. Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 2011; 471: 230–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 2009; 5: 97–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M . Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010; 463: 1035–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 2010; 468: 521–526.

    Article  CAS  PubMed  Google Scholar 

  63. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010; 142: 375–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jacome A, Navarro S, Rio P, Yanez RM, Gonzalez-Murillo A, Lozano ML et al. Lentiviral-mediated genetic correction of hematopoietic and mesenchymal progenitor cells from Fanconi anemia patients. Mol Ther 2009; 17: 1083–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marangoni F, Bosticardo M, Charrier S, Draghici E, Locci M, Scaramuzza S et al. Evidence for long-term efficacy and safety of gene therapy for Wiskott-Aldrich syndrome in preclinical models. Mol Ther 2009; 17: 1073–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao H, Pestina TI, Nasimuzzaman M, Mehta P, Hargrove PW, Persons DA . Amelioration of murine beta-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both gamma-globin and the MGMT drug-resistance gene. Blood 2009; 113: 5747–5756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Connolly JB . Lentiviruses in gene therapy clinical research. Gene Therapy 2002; 9: 1730–1734.

    Article  CAS  PubMed  Google Scholar 

  68. Woods NB, Muessig A, Schmidt M, Flygare J, Olsson K, Salmon P et al. Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood 2003; 101: 1284–1289.

    Article  CAS  PubMed  Google Scholar 

  69. Ly H, Kawase Y, Yoneyama R, Hajjar RJ . Gene therapy in the treatment of heart failure. Physiology (Bethesda) 2007; 22: 81–96.

    CAS  Google Scholar 

  70. Bouard D, Alazard-Dany D, Cosset FL . Viral vectors: from virology to transgene expression. Br J Pharmacol 2009; 157: 153–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bank A, Dorazio R, Leboulch P . A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Ann NY Acad Sci 2005; 1054: 308–316.

    Article  CAS  PubMed  Google Scholar 

  72. Cartier N, Aubourg P . Hematopoietic stem cell gene therapy in Hurler syndrome, globoid cell leukodystrophy, metachromatic leukodystrophy and X-adrenoleukodystrophy. Curr Opin Mol Ther 2008; 10: 471–478.

    CAS  PubMed  Google Scholar 

  73. Isacson O, Kordower JH . Future of cell and gene therapies for Parkinson′s disease. Ann Neurol 2008; 64 (Suppl 2): S122–S138.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaiser J . Gene therapy. Beta-thalassemia treatment succeeds, with a caveat. Science 2009; 326: 1468–1469.

    Article  CAS  PubMed  Google Scholar 

  75. Dropulic B . Lentiviral vectors: their molecular design, safety, and use in laboratory and preclinical research. Hum Gene Ther 2011; 22: 649–657.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the CARIPLO Foundation (# 2010-0768) and the Italian Ministry of Health (to GC). EDP was supported by the Superpig Program project co-financed by the Lombardy Region through the ‘Fund for promoting institutional agreements’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Condorelli.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Pasquale, E., Latronico, M., Jotti, G. et al. Lentiviral vectors and cardiovascular diseases: a genetic tool for manipulating cardiomyocyte differentiation and function. Gene Ther 19, 642–648 (2012). https://doi.org/10.1038/gt.2012.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.19

Keywords

This article is cited by

Search

Quick links