Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gene delivery technologies for cardiac applications

Abstract

Ischemic heart disease (IHD) and heart failure (HF) are major causes of morbidity and mortality in the Western society. Advances in understanding the molecular pathology of these diseases, the evolution of vector technology, as well as defining the targets for therapeutic interventions has placed these conditions within the reach of gene-based therapy. One of the cornerstones of limiting the effectiveness of gene therapy is the establishment of clinically relevant methods of genetic transfer. Recently there have been advances in direct and transvascular gene delivery methods with the use of new technologies. Current research efforts in IHD are focused primarily on the stimulation of angiogenesis, modify the coronary vascular environment and improve endothelial function with localized gene-eluting catheters and stents. In contrast to standard IHD treatments, gene therapy in HF primarily targets inhibition of apoptosis, reduction in adverse remodeling and increase in contractility through global cardiomyocyte transduction for maximal efficacy. This article will review a variety of gene-transfer strategies in models of coronary artery disease and HF and discuss the relative success of these strategies in improving the efficiency of vector-mediated cardiac gene delivery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Melo LG, Pachori AS, Gnecchi M, Dzau VJ . Genetic therapies for cardiovascular diseases. Trends Mol Med 2005; 11: 240–250.

    Article  CAS  PubMed  Google Scholar 

  2. Quarck R, Holvoet P . Gene therapy approaches for cardiovascular diseases. Curr Gene Ther 2004; 4: 207–223.

    Article  CAS  PubMed  Google Scholar 

  3. Hedman M, Hartikainen J, Ylä-Herttuala S . Progress and prospects: hurdles to cardiovascular gene therapy clinical trials. Gene Therapy 2011; 18: 743–749.

    Article  CAS  PubMed  Google Scholar 

  4. Ylä-Herttuala S, Markkanen JE, Rissanen TT . Gene therapy for ischemic cardiovascular diseases: some lessons learned from the first clinical trials. Trends Cardiovasc Med 2004; 14: 295–300.

    Article  CAS  PubMed  Google Scholar 

  5. Karvinen H, Ylä-Herttuala S . New aspects in vascular gene therapy. Curr Opin Pharmacol 2010; 10: 208–211.

    Article  CAS  PubMed  Google Scholar 

  6. Lassaletta AD, Chu LM, Sellke FW . Therapeutic neovascularization for coronary disease: current state and future prospects. Basic Res Cardiol 2011; 106: 897–909.

    Article  PubMed  Google Scholar 

  7. Hajjar RJ, del Monte F, Matsui T, Rosenzweig A . Prospects for gene therapy for heart failure. Circ Res 2000; 86: 616–621.

    Article  CAS  PubMed  Google Scholar 

  8. Fargnoli AS, Katz MG, Yarnall C, Sumaroka MV, Stedman H, Rabinowitz JE et al. A Pharmacokinetic analysis of molecular cardiac surgery with recirculation mediated delivery of BARKct gene therapy: developing a quantitative definition of the therapeutic window. J Cardiac Fail 2011; 17: 691–699.

    Article  Google Scholar 

  9. Katz MG, Swain JD, Tomasulo CE, Sumaroka M, Fargnoli AS, Bridges CR . Current strategies for myocardial gene delivery. J Mol Cell Cardiol 2011; 50: 766–776.

    Article  CAS  PubMed  Google Scholar 

  10. Hinkel R, Trenkwalder T, Kupatt C . Gene therapy for ischemic heart disease. Expert Opin Biol Ther 2011; 11: 723–737.

    Article  CAS  PubMed  Google Scholar 

  11. Melo LG, Pachori AS, Kong D, Gnecchi M, Wang K, Pratt RE et al. Gene and cell-based therapies for heart disease. FASEB J 2004; 18: 648–663.

    Article  CAS  PubMed  Google Scholar 

  12. Mack CA, Patel SR, Schwarz EA, Zanzonico P, Hahn RT, Ilercil A . Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for VEGF 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 1998; 115: 168–177.

    Article  CAS  PubMed  Google Scholar 

  13. Pätilä T, Ikonen T, Rutanen J, Ahonen A, Lommi J, Lappalainen K et al. Vascular endothelial growth factor C-induced collateral formation in a model of myocardial ischemia. J Heart Lung Transplant 2006; 25: 206–213.

    Article  PubMed  Google Scholar 

  14. Schwarz ER, Speakman MT, Patterson M, Hale SS, Isner JM, Kedes LH et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor in a myocardial infarction model in the rat-angiogenesis and angioma formation. J Am Coll Cardiol 2000; 35: 1323–1330.

    Article  CAS  PubMed  Google Scholar 

  15. Vera Janavel GL, De Lorenzi A, Cortes C, Olea FD, Cabeza Meckert P, Bercovich A et al. Effect of VEGF gene transfer on infarct size, left ventricular function and myocardial perfusion in sheep after two months of coronary artery occlusion. J Gene Med 2011; e-pub ahead of print 26 September 2011; doi:10.1002/jgm.168.

  16. Bull DA, Bailey SH, Rentz JJ, Zebrack JS, Lee M, Litwin SE et al. Effect of Terplex/VEGF-165 gene therapy on left ventricular function and structure following myocardial infarction. J Control Release 2003; 93: 175–181.

    Article  CAS  PubMed  Google Scholar 

  17. Ferrarini M, Arsic N, Recchia FA, Zentilin L, Zacchigna S, Xu X et al. Adeno-associated virus-mediated transduction of VEGF 165 improves cardiac tissue viability and functional recovery after permanent coronary occlusion in conscious dogs. Circ Res 2006; 98: 954–961.

    Article  CAS  PubMed  Google Scholar 

  18. Grossman PM, Han Z, Palasis M, Barry JJ, Lederman RJ . Incomplete retention after direct myocardial injection. Cathet Cardiovasc Interv 2002; 55: 392–397.

    Article  Google Scholar 

  19. Ishikawa K, Tilemann L, Fish K, Hajjar RJ . Gene delivery methods in cardiac gene therapy. J Gene Med 2011; 13: 566–572.

    Article  CAS  PubMed  Google Scholar 

  20. Lazarous DF, Shou M, Stiber JA, Hodge E, Thirumurti V, Goncalves L et al. Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovasc Res 1999; 44: 294–302.

    Article  CAS  PubMed  Google Scholar 

  21. Landau C, Jacobs AK, Haudenschild CC . Intrapericardial basic fibroblast growth factor induces myocardial angiogenesis in a rabbit model of chronic ischemia. Am Heart J 1995; 129: 924–931.

    Article  CAS  PubMed  Google Scholar 

  22. Kornowski R, Fuchs S, Leon MB et al. Delivery strategies to achieve therapeutic myocardial angiogenesis. Circulation 2000; 101: 454–458.

    Article  CAS  PubMed  Google Scholar 

  23. Thirumurti V, Shou M, Hodge E, Concalves L, Epstein SE, Lazarous DF et al. Lack of efficacy of intravenous basic fibroblast growth factor in promoting myocardial angiogenesis. J Am Coll Cardiol 1998; 31: 54A.

    Article  Google Scholar 

  24. Lazarous DF, Shou M, Stiber JA, Dadhania DM, Thirumurti V, Hodge E et al. Pharmacodynamics of basic fibroblast growth factor: route of administration myocardial and systemic distribution. Cardiovasc Res 1997; 36: 78–85.

    Article  CAS  PubMed  Google Scholar 

  25. Lazarous DF, Scheinowitz M, Shou M, Hodge E, Rajanayagam S, Hunsberger S et al. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 1995; 91: 145–153.

    Article  CAS  PubMed  Google Scholar 

  26. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Samuel JL et al. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 1996; 93: 2178–2187.

    Article  CAS  PubMed  Google Scholar 

  27. Hiltunen MO, Turunen MP, Turunen AM, Rissanen TT, Laitinen M, Kosma VM et al. Biodistribution of adenoviral vector to nontarget tissues after local in vivo gene transfer to arterial wall using intravascular and periadventitial gene delivery methods. FASEB J 2000; 14: 2230–2236.

    Article  CAS  PubMed  Google Scholar 

  28. Dzau VJ, Braun-Dullaeus RC, Sedding DG . Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 2002; 8: 1249–1256.

    Article  CAS  PubMed  Google Scholar 

  29. Barath P, Popov A, Dillehay GL, Matos G, McKiernan T . Infiltrator angioplasty balloon catheter. Cathet Cardiovasc Diagn 1997; 41: 333–341.

    Article  CAS  PubMed  Google Scholar 

  30. Gaffney MM, Hynes SO, Barry F, O’Brien T . Cardiovascular gene therapy: current status and therapeutic potential. Brit J Pharm 2007; 152: 175–188.

    Article  CAS  Google Scholar 

  31. Sharif F, Daly K, Crowley J, O’Brien T . Current status of catheter- and stent-based gene therapy. Cardiovasc Res 2004; 64: 208–216.

    Article  CAS  PubMed  Google Scholar 

  32. Goldman B, Blanke H, Wolinsky H . Influence of pressure on permeability of normal and diseased muscular arteries to horse-radish peroxide. A new catheter approach. Atherosclerosis 1987; 65: 215–225.

    Article  CAS  PubMed  Google Scholar 

  33. Rome JJ, Shayani V, Newmark KD, Farrell S, Lee SW, Virmani R et al. Adenoviral vector mediated gene transfer into sheep arteries using a double balloon catheter. Hum Gene Ther 1994; 5: 1249–1258.

    Article  CAS  PubMed  Google Scholar 

  34. Wolinsky H, Thung SN . Use of a perforated balloon catheter to deliver concentrated heparin into the wall of the normal canine artery. J Am Coll Cardiol 1990; 15: 475–481.

    Article  CAS  PubMed  Google Scholar 

  35. Flugelman MY, Jaklitsch MT, Newman KD, Casscells W, Bratthauer GL, Dichek DA . Low level in vivo gene transfer into the arterial wall through a perforated balloon catheter. Circulation 1992; 85: 1110–1117.

    Article  CAS  PubMed  Google Scholar 

  36. Willard JE, Landau C, Glamann DB, Burns D, Jessen ME, Pirwitz MJ et al. Genetic modification of the vessel wall. Circulation 1994; 89: 2190–2197.

    Article  CAS  PubMed  Google Scholar 

  37. Takeshita S, Tsurumi Y, Couffinahl T, Asahara T, Bauters C, Symes J et al. Gene transfer of naked DNA encoding for three isoforms of VEGF stimulates collateral development in vivo. Lab Invest 1996; 75: 487–501.

    CAS  PubMed  Google Scholar 

  38. Asahara T, Chen D, Tsurumi Y, Kearney M, Rossow S, Symes J et al. Accelerated restitution of endothelial integrity and endothelium-dependent function after phVEGF165 gene transfer. Circulation 1996; 94: 3291–3302.

    Article  CAS  PubMed  Google Scholar 

  39. Numaduchi Y, Okumura K, Harada M, Naruse K, Yamada M, Osanai H et al. Catheter-based prostacyclin synthase gene transfer prevents in-stent restenosis in rabbit atheromatous arteries. Cardiovasc Res 2004; 61: 177–185.

    Article  CAS  Google Scholar 

  40. Clowes AW, Collazzo RE, Karnovsky MJ . A morphologic and permeability study of luminal smooth muscle cells after arterial injury in the rat. Lab Invest 1978; 39: 141–150.

    CAS  PubMed  Google Scholar 

  41. Tahlil O, Brami M, Feldman LJ, Branellec D, Steg PG . The Dispatch catheter as a delivery tool for arterial tool for arterial gene transfer. Cardiovasc Res 1997; 33: 181–187.

    Article  CAS  PubMed  Google Scholar 

  42. Pavlides GS, Barath P, Maginas A, Vasilikos V, Cokkinos DV, O’Neill WW . Intramural drug delivery by direct injection within arterial wall: first clinical experience with a novel intracoronary delivery-infiltrator system. Cathet Cardiovasc Diagn 1997; 41: 287–292.

    Article  CAS  PubMed  Google Scholar 

  43. Laitinen M, Hartikainen J, Hiltunen MO, Eranen J, Kiviniemi M, Narvanen O et al. Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Ther 2000; 11: 263–270.

    Article  CAS  PubMed  Google Scholar 

  44. Fishbein I, Chorny M, Levy RJ . Site-specific gene therapy for cardiovascular disease. Curr Opin Drug Discov Devel 2010; 13: 203–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharif F, Hynes SO, McMahon J, Cooney R, Conroy S, Dockery P et al. Gene-eluting stents: comparison of adenoviral and adeno-associated viral gene delivery to the blood vessel wall in vivo. Hum Gene Ther 2006; 17: 741–750.

    Article  CAS  PubMed  Google Scholar 

  46. Koren B, Weisz A, Fisher L, Gluzman Z, Preis M, Avramovitch N et al. Efficient transduction and seeding of human endothelial cells into metallic stents using bicistronic pseudo-typed retroviral vectors encoding vascular endothelial growth factor. Cardiovasc Revasc Med 2006; 7: 173–178.

    Article  PubMed  Google Scholar 

  47. Takahashi A, Palmer-Opolski M, Smith RC, Walsh K . Transgene delivery of plasmid DNA to smooth muscle cells and macrophages from a biostable polymer-coated stent. Gene Therapy 2003; 10: 1471–1478.

    Article  CAS  PubMed  Google Scholar 

  48. Klugherz BD, Jones PL, Cui X, Chen W, Meneveau NF, DeFelice S et al. Gene delivery from a DNA controlled-release stent in porcine coronary arteries. Nat Biotechnol 2000; 18: 1181–1184.

    Article  CAS  PubMed  Google Scholar 

  49. Fishbein I, Alferiev IS, Nyanguile O, Gaster R, Vohs JM, Wong GS et al. Bisphosphonate-mediated gene vector delivery from the metal surfaces of stents. Proc Natl Acad Sci USA 2006; 103: 159–164.

    Article  CAS  PubMed  Google Scholar 

  50. Klugherz BD, Song C, DeFelice S, Cui X, Lu Z, Connolly J et al. Gene delivery to pig coronary arteries from stents carrying antibody-tethered adenovirus. Hum Gene Ther 2002; 13: 443–454.

    Article  CAS  PubMed  Google Scholar 

  51. Perstein I, Connolly JM, Cui X, Song C, Li Q, Jones PL et al. DNA delivery from an intravascular stent with a denatured collagen-polylactic-polyglycolic acid-controlled release coating: mechanisms of enhanced transfection. Gene Therapy 2003; 10: 1420–1428.

    Article  CAS  Google Scholar 

  52. Lemos PA, Serruys PW, Sousa JE . Drug-eluting stents: cost versus clinical benefit. Circulation 2003; 107: 3003–3007.

    Article  PubMed  Google Scholar 

  53. Lopez JJ, Laham RJ, Stamler A, Pearlman JD, Bunting S, Kaplan A et al. VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc Res 1998; 40: 272–281.

    Article  CAS  PubMed  Google Scholar 

  54. Hariawala MD, Horowitz JR, Esakof D, Sheriff DD, Walter DH, Keyt B et al. VEGF improves myocardial blood flow but produces EDRF-mediated hypotension in porcine hearts. J Surg Res 1996; 63: 77–82.

    Article  CAS  PubMed  Google Scholar 

  55. Yang R, Thomas GR, Bunting S, Ko A, Ferrara N, Keyt B et al. Effects of vascular endothelial growth factor on hemodynamics and cardiac performance. J Cardiovasc Pharmacol 1996; 27: 838–844.

    Article  CAS  PubMed  Google Scholar 

  56. Giordano FJ, Ping P, McKirnan MD, Nozaki S, DeMaria AN, Dillmann WH et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 1996; 2: 534–539.

    Article  CAS  PubMed  Google Scholar 

  57. Tevaearai HT, Walton GB, Keys JR, Koch WJ, Eckhart AD . Acute ischemic cardiac dysfunction is attenuated via gene transfer of a peptide inhibitor of the beta-adrenergic receptor kinase (betaARK1). J Gene Med 2005; 7: 1172–1177.

    Article  CAS  PubMed  Google Scholar 

  58. Battler A, Scheinowitz M, Bor A, Hasdai D, Vered Z, Di Segni E et al. Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J Am Coll Cardiol 1993; 22: 2001–2006.

    Article  CAS  PubMed  Google Scholar 

  59. Beeri R, Chaput M, Cuerrero L, Kawase Y, Yosefy C, Abedat S et al. Gene delivery of sarcoplasmic reticulum calcium ATPase inhibits ventricular remodeling in ischemic mitral regurgitation. Circ Heart Fail 2010; 3: 627–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mariani JA, Kaye DM . Delivery of gene and cellular therapies for heart disease. J Cardiovasc Transl Res 2010; 3: 417–426.

    Article  PubMed  Google Scholar 

  61. Rajanayagam MA, Shou M, Thirumurti V, Lazarous DF, Quyyumi AA, Goncalves L et al. Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dogs. J Am Coll Cardiol 2000; 35: 519–526.

    Article  CAS  PubMed  Google Scholar 

  62. von Degenfeld G, Raake P, Kupatt C, Lebherz C, Hinkel R, Gildehaus FJ et al. Selective pressure-regulated retroinfusion of FGF-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. J Am Coll Cardiol 2003; 42: 1120–1128.

    Article  CAS  PubMed  Google Scholar 

  63. Kupatt C, Wichels R, Deiss M, Molnar A, Lebherz C, Raake P et al. Retroinfusion of NFkappaB decoy oligonucleotide extends cardioprotection achieved by CD18 inhibition in a preclinical study of myocardial ischemia and retroinfusion in pigs. Gene Therapy 2002; 9: 518–526.

    Article  CAS  PubMed  Google Scholar 

  64. Kupatt C, Hinkel R, Vachenauer R, Horstkotte J, Raake P, Sandler T et al. VEGF165 transfection decreases postischemic NF-kappa B-dependent myocardial reperfusion injury in vivo: role of eNOS phosphorylation. FASEB J 2003; 17: 705–707.

    Article  CAS  PubMed  Google Scholar 

  65. McPhee AWJ, Samulski RJ . Gene therapy for cardiomyocytes, a heart beat away. Gene Therapy 2009; 17: 707–708.

    Article  CAS  Google Scholar 

  66. Vinge LE, Raake PW, Koch WJ . Gene therapy in heart failure. Circ Res 2008; 102: 1458–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Katz MG, Fargnoli AS, Tomasulo CE, Pritchette LA, Bridges CR . Model-specific selection of molecular targets for heart failure gene therapy. J Gene Med 2011; 13: 573–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leotta E, Patejunas G, Murphy G, Szokol J, McGregor L, Carbray J et al. Gene therapy with adenovirus-mediated myocardial transfer of VEGF 121 improves cardiac performance in a pacing model of congestive heart failure. J Thorac Cardiovasc Surg 2002; 123: 1101–1103.

    Article  CAS  PubMed  Google Scholar 

  69. Rengo G, Lymperopoulos A, Zincarelli C, Donniacuo M, Soltys S, Rabinowitz JE et al. Myocardial adeno-associated virus serotype 6-BARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation 2009; 119: 89–98.

    Article  CAS  PubMed  Google Scholar 

  70. Wright MJ, Wightman LML, Latchman DS, Marber MS . In vivo myocardial gene transfer:optimization and evaluation of intracoronary gene delivery in vivo. Gene Therapy 2001; 8: 1833–1839.

    Article  CAS  PubMed  Google Scholar 

  71. Hajjar RJ, Schmidt U, Matsui T, Guerreno JL, Lee K-H, Gwathmey JK et al. Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA 1998; 95: 5251–5256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, Jin H et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol 2008; 51: 1112–1119.

    Article  CAS  PubMed  Google Scholar 

  73. Emani SM, Shah AS, Bowman MK, Emani S, Wilson K, Glower DD et al. Catheter-based intracoronary myocardial adenoviral gene delivery: importance of intraluminal seal and infusion flow rate. Mol Ther 2003; 8: 306–313.

    Article  CAS  PubMed  Google Scholar 

  74. Iwanaga Y, Hoshijima M, Gu Y, Iwatabe M, Dieterle T, Ikeda Y et al. Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. J Clin Invest 2004; 113: 727–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 2000; 97: 793–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. del Monte F, Williams E, Lebeche D, Schmidt U, Rosenzweig A, Gwathmey JK et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation 2001; 104: 1424–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lai NC, Roth DM, Gao MH, Tang T, Dalton N, Lay YY et al. Intracoronary adenovirus encoding adenylyl cyclase 6 increases left ventricular function in heart failure. Circulation 2004; 119: 330–336.

    Article  CAS  Google Scholar 

  78. Rebolledo B, Lai NC, Gao MH, Takahashi T, Roth DM, Baird SM et al. Adenylyl cyclase gene transfer increased function of the failing heart. Hum Gene Ther 2006; 17: 1043–1048.

    Article  CAS  PubMed  Google Scholar 

  79. Shah AS, White DC, Emani S, Kypson AP, Lilly RE, Wilson K et al. In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 2001; 103: 1311–1316.

    Article  CAS  PubMed  Google Scholar 

  80. White DC, Hata JA, Shah AS, Glower DD, Lefkowitz RJ, Koch WJ . Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc Natl Acad Sci USA 2000; 97: 5428–5433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pleger ST, Most P, Boucher M, Soltys S, Chuprun JK, Pleger W et al. Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation 2007; 115: 2506–2515.

    Article  CAS  PubMed  Google Scholar 

  82. Niwano K, Arai M, Koitabashi N, Watanabe A, Ikeda Y, Miyoshi H et al. Lentiviral vector-mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats. Mol Ther 2008; 16: 1026–1032.

    Article  CAS  PubMed  Google Scholar 

  83. Sasano T, McDonald AD, Kikuchi K, Donahue JK . Molecular ablation of ventricular tachycardia after myocardial infarction. Nat Med 2006; 12: 1256–1258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pleger ST, Shah C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med 2011; 3: 92ra64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Patten RD, Hall-Porter MR . Small animal models of heart failure. Development of novel therapies, past and present. Circ Heart Fail 2009; 2: 138–144.

    Article  PubMed  Google Scholar 

  86. Kloner RA, Jennings RB . Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation 2001; 104: 2981–2989.

    Article  CAS  PubMed  Google Scholar 

  87. Kloner RA, Jennings RB . Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation 2001; 104: 3158–3167.

    Article  CAS  PubMed  Google Scholar 

  88. Bridges CR, Gopal K, Holt DE, Yarnall C, Cole S, Anderson RB et al. Efficient myocyte gene delivery with complete cardiac surgical isolation in situ. J Thorac Cardiovasc Surg 2005; 130: 1364–1370.

    Article  PubMed  Google Scholar 

  89. White JD, Thesier DM, Swain JD, Katz MG, Tomasulo CE, Henderson A et al. Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo. Gene Therapy 2011; 18: 546–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kaye DM, Preovolos A, Marshall T, Byrne M, Hoshijima M, Hajjar RJ et al. Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol 2007; 50: 253–260.

    Article  CAS  PubMed  Google Scholar 

  91. Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM . Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Therapy 2008; 15: 1550–1557.

    Article  CAS  PubMed  Google Scholar 

  92. Bridges CR . Recirculating method of cardiac gene delivery should be called ‘non-recirculating’ method. Gene Therapy 2009; 16: 939–940.

    Article  CAS  PubMed  Google Scholar 

  93. Kawase Y, Ladage D, Hajjar RJ . Rescuing the failing heart by targeted gene transfer. J Am Coll Cardiol 2011; 57: 1169–1180.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jones JM, Petrofski JA, Wilson KH, Steenbergen C, Koch WJ, Milano CA . Beta2 adrenoreceptor gene therapy ameliorates left ventricular dysfunction following cardiac surgery. Eur J Cardiothorac Surg 2004; 26: 1161–1168.

    Article  PubMed  Google Scholar 

  95. Lillehei CW, DeWall RA, Gott VL, Varco RL . Direct vision correction of calcific aortic stenosis by means of pump-oxygenator and retrograde coronary sinus perfusion. Dis Chest 1956; 30: 123–132.

    Article  CAS  PubMed  Google Scholar 

  96. Boekstegers P, Kupatt C . Current concepts and applications of coronary venous retroinfusion. Basic Res Cardiol 2004; 99: 373–381.

    Article  PubMed  Google Scholar 

  97. Giordano FJ . Retrograde coronary perfusion: a superior route to deliver therapeutics to the heart. J Am Coll Cardiol 2003; 42: 1129–1131.

    Article  PubMed  Google Scholar 

  98. Donahue JK, Kikkawa K, Johns DC, Marban E, Lawrence JH . Ultrarapid, highly efficient viral gene transfer to the heart. Proc Natl Acad Sci USA 1997; 94: 4664–4668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Logeart D, Hatem SN, Heimburger M, Roux AL, Michel JB, Mercadier JJ . How to optimize in vivo gene transfer to cardiac myocytes: mechanical or pharmacological procedures? Hum Gene Ther 2001; 12: 1601–1610.

    Article  CAS  PubMed  Google Scholar 

  100. Fearon WF, Ikedo F, Bailey PR, Hiatt BL, Herity NA, Carter AJ et al. Evaluation of high-pressure retrograde coronary coronary venous delivery of FGF-2 protein. Catheter Cardiovasc Interv 2004; 61: 422–428.

    Article  PubMed  Google Scholar 

  101. Rapti K, Chaanine AH, Hajjar RJ . Targeted gene therapy for the treatment of heart failure. Can J Cardiol 2011; 27: 265–283.

    Article  CAS  PubMed  Google Scholar 

  102. Wasala NB, Shin J-H, Duan D . The evolution of heart gene delivery vectors. J Gene Med 2011; 13: 557–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Katz MG, Swain JD, Fargnoli AS, Bridges CR . Gene therapy during cardiac surgery: role of surgical technique to minimize collateral organ gene expression. Interact Cardiovasc Thorac Surg 2010; 11: 727–731.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Perry McCants for the excellent illustrations in this article. This work was supported by grants from the National Heart Lung and Blood Institute, NIH 1-R01-HL083078-01A2, and the Gene Therapy Resource Program of the National Heart, Lung, and Blood Institute, NIH P30-DK047757.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C R Bridges.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, M., Fargnoli, A., Pritchette, L. et al. Gene delivery technologies for cardiac applications. Gene Ther 19, 659–669 (2012). https://doi.org/10.1038/gt.2012.11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.11

Keywords

This article is cited by

Search

Quick links