Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sarcoplasmic reticulum and calcium cycling targeting by gene therapy

Abstract

Although progress in conventional treatments is making steady and incremental gains to reduce mortality associated with heart failure (HF), there remains a need to explore potentially new therapeutic approaches. HF induced by different etiologies such as coronary artery disease, hypertension, diabetes, infection or inflammation results generally in calcium cycling dysregulation at the myocyte level. Recent advances in understanding of the molecular basis of these calcium cycling abnormalities, together with the evolution of increasingly efficient gene transfer technology, has placed HF within the reach of gene-based therapy. Furthermore, the recent successful completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium pump ushers in a new era for gene therapy for the treatment of HF.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation 2010; 121: e46–e215.

    PubMed  Google Scholar 

  2. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K et al. Heart disease and stroke statistics--2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009; 119: 480–486.

    Article  PubMed  Google Scholar 

  3. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM et al. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation 2011; 123: e18–e209.

    Article  PubMed  Google Scholar 

  4. Stevenson LW . Inotropic therapy for heart failure. N Engl J Med 1998; 339: 1848–1850.

    Article  CAS  PubMed  Google Scholar 

  5. Stevenson LW . Clinical use of inotropic therapy for heart failure: looking backward or forward? Part II: chronic inotropic therapy. Circulation 2003; 108: 492–497.

    Article  PubMed  Google Scholar 

  6. Stevenson LW . Challenges for the basis of practice in heart failure. Circ Heart Fail 2008; 1: 81–83.

    Article  PubMed  Google Scholar 

  7. Stevenson LW, Couper G, Natterson B, Fonarow G, Hamilton MA, Woo M et al. Target heart failure populations for newer therapies. Circulation 1995; 92 (9 Suppl): II174–II181.

    Article  CAS  PubMed  Google Scholar 

  8. Stevenson LW, Miller LW, Desvigne-Nickens P, Ascheim DD, Parides MK, Renlund DG et al. Left ventricular assist device as destination for patients undergoing intravenous inotropic therapy: a subset analysis from REMATCH (Randomized Evaluation of Mechanical Assistance in Treatment of Chronic Heart Failure). Circulation 2004; 110: 975–981.

    Article  PubMed  Google Scholar 

  9. Gwathmey JK, Slawsky MT, Hajjar RJ, Briggs GM, Morgan JP . Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. J Clin Invest 1990; 85: 1599–5613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK . Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol 1998; 30: 1929–1237.

    Article  CAS  PubMed  Google Scholar 

  11. Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J et al. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 1994; 75: 434–442.

    Article  CAS  PubMed  Google Scholar 

  12. Hasenfuss G, Reinecke H, Studer R, Pieske B, Meyer M, Drexler H et al. Calcium cycling proteins and force-frequency relationship in heart failure. Basic Res Cardiol 1996; 91 (Suppl 2): 17–22.

    Article  CAS  PubMed  Google Scholar 

  13. Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS et al. Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failing human myocardium. Circulation 1999; 99: 641–648.

    Article  CAS  PubMed  Google Scholar 

  14. Tilemann L, Ishikawa K, Weber T, Hajjar RJ . Gene therapy for heart failure. Circ Res 2012; 110: 777–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawase Y, Ladage D, Hajjar RJ . Rescuing the failing heart by targeted gene transfer. J Am Coll Cardiol 2011; 57: 1169–1180.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 2009; 15: 171–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 2011; 124: 304–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, Jin H et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol 2008; 51: 1112–1119.

    Article  CAS  PubMed  Google Scholar 

  19. Ladage D, Turnbull IC, Ishikawa K, Takewa Y, Rapti K, Morel C et al. Delivery of gel foam-enabled cells and vectors into the pericardial space using a percutaneous approach in a porcine model. Gene Therapy 2011; 18: 979–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM . Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Therapy 2008; 15: 1550–1557.

    Article  CAS  PubMed  Google Scholar 

  21. Kaye DM, Preovolos A, Marshall T, Byrne M, Hoshijima M, Hajjar R et al. Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol 2007; 50: 253–260.

    Article  CAS  PubMed  Google Scholar 

  22. Flotte TR, Solow R, Owens RA, Afione S, Zeitlin PL, Carter BJ . Gene expression from adeno-associated virus vectors in airway epithelial cells. Am J Respir Cell Mol Biol 1992; 7: 349–356.

    Article  CAS  PubMed  Google Scholar 

  23. Gao G, Alvira MR, Somanathan S, Lu Y, Vandenberghe LH, Rux JJ et al. Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci USA 2003; 100: 6081–6086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao G, Lu Y, Calcedo R, Grant RL, Bell P, Wang L et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther 2006; 13: 77–87.

    Article  CAS  PubMed  Google Scholar 

  25. Gao G, Vandenberghe LH, Wilson JM . New recombinant serotypes of AAV vectors. Curr Gene Ther 2005; 5: 285–297.

    Article  CAS  PubMed  Google Scholar 

  26. Hajjar RJ, Zsebo K . AAV vectors and cardiovascular disease: targeting TNF receptor in the heart: clue to way forward with AAV? Gene Therapy 2007; 14: 1611–1612.

    Article  CAS  PubMed  Google Scholar 

  27. Bell CL, Vandenberghe LH, Bell P, Limberis MP, Gao GP, Van Vliet K et al. The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J Clin Invest 2011; 121: 2427–2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carter BJ . Adeno-associated virus vectors in clinical trials. Hum Gene Ther 2005; 16: 541–550.

    Article  CAS  PubMed  Google Scholar 

  29. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ . Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Therapy 2003; 10: 2112–2118.

    Article  CAS  PubMed  Google Scholar 

  30. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM . Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 2009; 199: 381–390.

    Article  PubMed  Google Scholar 

  31. Yang Y, Li Q, Ertl HC, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69: 2004–2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bers DM . Cardiac excitation-contraction coupling. Nature 2002; 415: 198–205.

    Article  CAS  PubMed  Google Scholar 

  33. Hajjar RJ, Kang JX, Gwathmey JK, Rosenzweig A . Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circulation 1997; 95: 423–429.

    Article  CAS  PubMed  Google Scholar 

  34. Hajjar RJ, Schmidt U, Matsui T, Guerrero JL, Lee KH, Gwathmey JK et al. Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA 1998; 95: 5251–5256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Loukianov E, Ji Y, Grupp IL, Kirkpatrick DL, Baker DL, Loukianova T et al. Enhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. Circ Res 1998; 83: 889–897.

    Article  CAS  PubMed  Google Scholar 

  36. Mork HK, Sjaastad I, Sande JB, Periasamy M, Sejersted OM, Louch WE . Increased cardiomyocyte function and Ca2+ transients in mice during early congestive heart failure. J Mol Cell Cardiol 2007; 43: 177–186.

    Article  CAS  PubMed  Google Scholar 

  37. Periasamy M, Reed TD, Liu LH, Ji Y, Loukianov E, Paul RJ et al. Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J Biol Chem 1999; 274: 2556–2562.

    Article  CAS  PubMed  Google Scholar 

  38. Schultz Jel J, Glascock BJ, Witt SA, Nieman ML, Nattamai KJ, Liu LH et al. Accelerated onset of heart failure in mice during pressure overload with chronically decreased SERCA2 calcium pump activity. Am J Physiol Heart Circ Physiol 2004; 286: H1146–H1153.

    Article  PubMed  Google Scholar 

  39. Hajjar RJ, Schmidt U, Kang JX, Matsui T, Rosenzweig A . Adenoviral gene transfer of phospholamban in isolated rat cardiomyocytes. Rescue effects by concomitant gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circ Res 1997; 81: 145–153.

    Article  CAS  PubMed  Google Scholar 

  40. del Monte F, Harding SE, Schmidt U, Matsui T, Kang ZB, Dec GW et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 1999; 100: 2308–2311.

    Article  CAS  PubMed Central  Google Scholar 

  41. Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 2000; 97: 793–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. del Monte F, Williams E, Lebeche D, Schmidt U, Rosenzweig A, Gwathmey JK et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation 2001; 104: 1424–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sakata S, Lebeche D, Sakata N, Sakata Y, Chemaly ER, Liang LF et al. Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J Mol Cell Cardiol 2007; 42: 852–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Davia K, Bernobich E, Ranu HK, del Monte F, Terracciano CM, MacLeod KT et al. SERCA2A overexpression decreases the incidence of aftercontractions in adult rabbit ventricular myocytes. J Mol Cell Cardiol 2001; 33: 1005–1015.

    Article  CAS  PubMed  Google Scholar 

  45. del Monte F, Lebeche D, Guerrero JL, Tsuji T, Doye AA, Gwathmey JK et al. Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc Natl Acad Sci USA 2004; 101: 5622–5627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Prunier F, Kawase Y, Gianni D, Scapin C, Danik SB, Ellinor PT et al. Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation 2008; 118: 614–624.

    Article  CAS  PubMed  Google Scholar 

  47. Cutler MJ, Wan X, Laurita KR, Hajjar RJ, Rosenbaum DS . Targeted SERCA2a gene expression identifies molecular mechanism and therapeutic target for arrhythmogenic cardiac alternans. Circ Arrhythm Electrophysiol 2009; 2: 686–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Del Monte F, Dalal R, Tabchy A, Couget J, Bloch KD, Peterson R et al. Transcriptional changes following restoration of SERCA2a levels in failing rat hearts. FASEB J 2004; 18: 1474–1476.

    Article  PubMed  Google Scholar 

  49. Pleger ST, Most P, Boucher M, Soltys S, Chuprun JK, Pleger W et al. Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation 2007; 115: 2506–2515.

    Article  CAS  PubMed  Google Scholar 

  50. Hajjar RJ, Zsebo K, Deckelbaum L, Thompson C, Rudy J, Yaroshinsky A et al. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail 2008; 14: 355–367.

    Article  CAS  PubMed  Google Scholar 

  51. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 2011; 124: 304–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suckau L, Fechner H, Chemaly E, Krohn S, Hadri L, Kockskamper J et al. Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 2009; 119: 1241–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by Leducq Foundation through the CAERUS network (RJH), NIH HL093183, HL088434, HL071763, HL080498, HL083156 and HL100396 (RJH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J Hajjar.

Ethics declarations

Competing interests

RJH is a scientific co-founder of CELLADON corporation, which is planning to commercializing AAV1.SERCA2a for the treatment of heart failure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulot, JS., Senyei, G. & Hajjar, R. Sarcoplasmic reticulum and calcium cycling targeting by gene therapy. Gene Ther 19, 596–599 (2012). https://doi.org/10.1038/gt.2012.34

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.34

Keywords

This article is cited by

Search

Quick links