Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cervical cancer-associated promoter polymorphism affects akna expression levels

Subjects

Abstract

Cervical cancer (CC) is responsible for >260 000 deaths worldwide each year. Efforts are being focused on identifying genetic susceptibility factors, especially in genes related to the immune response. Akna has been proposed to be one of them, but data regarding its functional role in the disease is scarce. Supporting the notion of akna as a CC susceptibility gene, we found two polymorphisms associated with squamous intraepithelial lesion (SIL) and CC; moreover, we identified an association between high akna expression levels and CC and SIL, but its direction differs in each disease stage. To show the potential existence of a cis-acting polymorphism, we assessed akna allelic expression imbalance for the alleles of the −1372C>A polymorphism. We found that, regardless of the study group, the number of transcripts derived from the A allele was significantly higher than those from the C allele. Our results support the hypothesis that akna is a CC susceptibility genetic factor and suggest that akna transcriptional regulation has a role in the disease. We anticipate our study to be a starting point for in vitro evaluation of akna transcriptional regulation and for the identification of transcription factors and cis-elements regulating AKNA function that are involved in carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Globocan 2012 (IARC) Section of Cancer Information. Available at: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx.

  2. Schlecht NF, Kulaga S, Robitaille J, Ferreira S, Santos M, Miyamura RA et al. Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia. JAMA 2001; 286: 3106–3114.

    Article  CAS  PubMed  Google Scholar 

  3. Dalstein V, Riethmuller D, Pretet JL, Le Bail Carval K, Sautiere JL, Carbillet JP et al. Persistence and load of high-risk HPV are predictors for development of high-grade cervical lesions: a longitudinal French cohort study. Int J Cancer 2003; 106: 396–403.

    Article  CAS  PubMed  Google Scholar 

  4. Insinga RP, Perez G, Wheeler CM, Koutsky LA, Garland SM, Leodolter S et al. Incident cervical HPV infections in young women: transition probabilities for CIN and infection clearance. Cancer Epidemiol Biomarkers Prev 2011; 20: 287–296.

    Article  PubMed  Google Scholar 

  5. Magnusson PK, Lichtenstein P, Gyllensten UB. Heritability of cervical tumours. Int J Cancer 2000; 88: 698–701.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Zhang L, Tian C, Yang L, Wang Z. Genetic variants and risk of cervical cancer: epidemiological evidence, meta-analysis and research review. BJOG 2014; 121: 664–673.

    Article  CAS  PubMed  Google Scholar 

  7. Engelmark MT, Ivansson EL, Magnusson JJ, Gustavsson IM, Beskow AH, Magnusson PK et al. Identification of susceptibility loci for cervical carcinoma by genome scan of affected sib-pairs. Hum Mol Genet 2006; 15: 3351–3360.

    Article  CAS  PubMed  Google Scholar 

  8. Siddiqa A, Sims-Mourtada JC, Guzman-Rojas L, Rangel R, Guret C, Madrid-Marina V et al. Regulation of CD40 and CD40 ligand by the AT-hook transcription factor AKNA. Nature 2001; 410: 383–387.

    Article  CAS  PubMed  Google Scholar 

  9. Sims-Mourtada JC, Bruce S, McKeller MR, Rangel R, Guzman-Rojas L, Cain K et al. The human AKNA gene expresses multiple transcripts and protein isoforms as a result of alternative promoter usage, splicing, and polyadenylation. DNA Cell Biol 2005; 24: 325–338.

    Article  CAS  PubMed  Google Scholar 

  10. Aravid L, Landsman D. AT-Hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acid Res 1998; 19: 4413–4421.

    Article  Google Scholar 

  11. Ma W, Ortiz-Quintero B, Rangel R, McKeller MR, Herrera-Rodriguez S, Castillo EF et al. Coordinate activation of inflammatory gene networks, alveolar destruction and neonatal death in AKNA deficient mice. Cell Res 2011; 21: 1564–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moliterno AR, Resar LM. AKNA: another AT-hook transcription factor ‘hooking-up’ with inflammation. Cell Res 2011; 21: 1528–1530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Helmrich A, Stout-Weider K, Hermann K, Schrock E, Heiden T. Common fragile sites are conserved features of human and mouse chromosomes and relate to large active genes. Genome Res 2006; 16: 1222–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Savas S, Liu G. Genetic variations as cancer prognostic markers: review and update. Hum Mutat 2009; 30: 1369–1377.

    Article  CAS  PubMed  Google Scholar 

  15. Moriarty HT, Webster LR. Fragile sites and bladder cancer. Cancer Genet Cytogenet 2003; 140: 89–98.

    Article  CAS  PubMed  Google Scholar 

  16. Callahan G, Denison SR, Phillips LA, Shridhar V, Smith DI. Characterization of the common fragile site FRA9E and its potential role in ovarian cancer. Oncogene 2003; 22: 590–601.

    Article  CAS  PubMed  Google Scholar 

  17. Perales G, Burguete-García AI, Dimas J, Bahena-Román M, Bermúdez-Morales VH, Moreno J et al. A polymorphism in the AT-hook motif of the transcriptional regulator AKNA is a risk factor for cervical cancer. Biomarkers 2010; 15: 470–474.

    Article  CAS  PubMed  Google Scholar 

  18. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  19. 1000 Genomes Project Consortium Abecasis GR Auton A Brooks LD DePristo MA Durbin RM et al. An integrated map pf genetic variation from 1092 human genomes. Nature 2012; 491: 56–65.

    Article  Google Scholar 

  20. Mao L, Yang P, Hou S, Li F, Kijlstra A. Label-free proteomics reveals decreased expression of CD18 and AKNA in peripheral CD4+ T cells from patients with Vogt-Koyanagi-Harada syndrome. PLoS ONE 2011; 6: e14616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. French RR, Chan HTC, Tutt AL, Glennie. MJ. CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T cell help. Nat Med 1999; 5: 548.

    Article  CAS  PubMed  Google Scholar 

  22. Díaz-Benítez CE, Navarro-Fuentes KR, Flores-Sosa JA, Juárez-Díaz J, Uribe-Salas FJ, Román-Basaure E et al. CD3zeta expression and T cell proliferation are inhibited by TGF-beta1 and IL-10 in cervical cancer patients. J Clin Immunol 2009; 29: 532–544.

    Article  PubMed  Google Scholar 

  23. Hibma MH. The immune response to papillomavirus during infection persistence and regression. Open Virol J 2012; 6: 241–248.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Castle PE, Hillier SL, Rabe LK, Hildesheim A, Herrero R, Bratti MC et al. An association of cervical inflammation with high-grade cervical neoplasia in women infected with oncogenic human papillomavirus (HPV). Cancer Epidemiol Biomarkers Prev 2001; 10: 1021–1027.

    CAS  PubMed  Google Scholar 

  25. Hammes LS, Tekmal RR, Naud P, Edelweiss MI, Kirma N, Valente PT et al. Macrophages, inflammation and risk of cervical intraepithelial neoplasia (CIN) progression-clinicopathological correlation. Gynecol Oncol 2007; 105: 157–165.

    Article  CAS  PubMed  Google Scholar 

  26. Nobbenhuis MA, Helmerhorst TJ, van den Brule AJ, Rozendaal L, Voorhorst FJ, Bezemer PD et al. Cytological regression and clearance of high-risk human papillomavirus in women with an abnormal cervical smear. Lancet 2001; 358: 1782–1783.

    Article  CAS  PubMed  Google Scholar 

  27. Monnier-Benoit S, Mauny F, Riethmuller D, Guerrini JS, Căpîlna M, Félix S et al. Immunohistochemical analysis of CD4+ and CD8+ T-cell subsets in high risk human papillomavirus-associated pre-malignant and malignant lesions of the uterine cervix. Gynecol Oncol 2006; 102: 22–31.

    Article  PubMed  Google Scholar 

  28. de Jong A, van Poelgeest MI, van der Hulst JM, Drijfhout JW, Fleuren GJ, Melief CJ et al. Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6. Cancer Res 2004; 64: 5449–5455.

    Article  CAS  PubMed  Google Scholar 

  29. Peng S, Trimble C, Wu L, Pardoll D, Roden R, Hung CF et al. HLA-DQB1*02-restricted HPV-16 E7 peptide-specific CD4+ T-cell immune responses correlate with regression of HPV-16-associated high-grade squamous intraepithelial lesions. Clin Cancer Res 2007; 13: 2479–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Woo YL, van den Hende M, Sterling JC, Coleman N, Crawford A, Kwappenberg KM et al. A prospective study on the natural course of low-grade squamous intraepithelial lesions and the presence of HPV16 E2-, E6- and E7-specific T-cell responses. Int J Cancer 2010; 126: 133–141.

    Article  CAS  PubMed  Google Scholar 

  31. Alcocer-Gonzalez JM, Berumen J, Tamez-Guerra R, Bermudez-Morales VH, Peralta-Zaragoza O, Hernandez-Pando R et al. In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cancer cells. Viral Immunol 2006; 19: 481–491.

    Article  CAS  PubMed  Google Scholar 

  32. Papic N, Maxwell CI, Delker DA, Liu S, Heale BS, Hagedorn CH. RNA-sequencing analysis of 5' capped RNAs identifies many new differentially expressed genes in acute hepatitis C virus infection. Viruses 2012; 4: 581–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Altenburg A, Baldus SE, Smola H, Pfister H, Hess S. CD40 ligand-CD40 interaction induces chemokines in cervical carcinoma cells in synergism with IFN-gamma. J Immunol 1999; 162: 4140–4147.

    CAS  PubMed  Google Scholar 

  34. Hill SC, Youde SJ, Man S, Teale GR, Baxendale AJ, Hislop A et al. Activation of CD40 in cervical carcinoma cells facilitates CTL responses and augments chemotherapy-induced apoptosis. J Immunol 2005; 174: 41–50.

    Article  CAS  PubMed  Google Scholar 

  35. Huang Q, Qu QX, Xie F, Zhang T, Hu JM, Chen YG et al. CD40 is overexpressed by HPV16/18-E6 positive cervical carcinoma and correlated with clinical parameters and vascular density. Cancer Epidemiol 2011; 35: 388–392.

    Article  CAS  PubMed  Google Scholar 

  36. Chen D, Gyllensten U. A cis-eQTL of HLA-DRB1 and a frameshift mutation of MICA contribute to the pattern of association of HLA alleles with cervical cancer. Cancer Med 2014; 3: 445–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones BL, Swallow DM. The impact of cis-acting polymorphisms on the human phenotype. Hugo J 2011; 5: 13–23.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hromas R, Morris J, Cornetta K, Berebitsky D, Davidson A, Sha M et al. Aberrant expression of the Myeloid Zinc Finger gene, MZF-1, is oncogenic. Cancer Res 1995; 55: 3610–3614.

    CAS  PubMed  Google Scholar 

  39. Gaboli M, Kotsi PA, Gurrieri C, Cattoretti G, Ronchetti S, Cordon-Cardo C et al. Mzf1 controls cell proliferation and tumorigenesis. Genes Dev 2001; 15: 1625–1630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Albergaria A, Resende C, Nobre AR, Ribeiro AS, Sousa B, Machado JC et al. CCAAT/enhancer binding protein β (C/EBPβ) isoforms as transcriptional regulators of the pro-invasive CDH3/P-cadherin gene in human breast cancer cells. PLoS ONE 2013; 8: e55749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rask K, Thörn M, Pontén F, Kraaz W, Sundfeldt K, Hedin L et al. Increased expression of the transcription factors CCAAT-enhancer binding protein-beta(C/EBBeta) and C/EBzeta (CHOP) correlate with invasiveness of human colorectal cancer. Int J Cancer 2000; 86: 337–343.

    Article  CAS  PubMed  Google Scholar 

  42. Tsai SJ, Hwang JM, Hsieh SC, Ying TH, Hsieh YH. Overexpression of myeloid zinc finger 1 suppresses matrix metalloproteinase-2 expression and reduces invasiveness of SiHa human cervical cancer cells. Biochem Biophys Res Commun 2012; 425: 462–467.

    Article  CAS  PubMed  Google Scholar 

  43. Torres-Poveda K, Burguete-García AI, Cruz M, Martínez-Nava GA, Bahena-Román M, Ortíz-Flores E et al. The SNP at −592 of human IL-10 gene is associated with serum IL-10 levels and increased risk for human papillomavirus cervical lesion development. Infect Agent Cancer 2012; 7: 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reese MG. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 2001; 26: 51–56.

    Article  CAS  PubMed  Google Scholar 

  45. Levitsky VG, Ignatieva EV, Ananko EA, Turnaev II, Merkulova TI, Kolchanov NA et al. Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions. BMC Bioinformatics 2007; 8: 481.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV et al. Databases on transcriptional regulation: TRANSFAC, TRRD, and COMPEL. Nucleic Acids Res 1998; 26: 364–370.

    Article  Google Scholar 

  47. Chekmenev DS, Haid C, Kel AE. P-Match: transcription factor binding site search by combining patterns and weight matrices. Nucleic Acids Res 2005; 33 (Web Server issue): W432–W437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001; 29: 308–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S et al. Ensembl 2013. Nucleic Acids Res 2013; 41 (Database issue): D48–D55.

    CAS  PubMed  Google Scholar 

  50. Chen X, Weaver J, Bove BA, Vanderveer LA, Weil SC, Miron A et al. Allelic imbalance in BRCA1 and BRCA2 gene expression is associated with an increased breast cancer risk. Hum Mol Genet 2008; 17: 1336–1348.

    Article  CAS  PubMed  Google Scholar 

  51. Lewontin RC. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 1964; 49: 49–67.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the patients for their participation in the study and MD Guillermina López-Estrada, Karina Delgado-Romero and David Cantú for the gynecological sampling and patient care that constitute the biological sample bank used. This work was supported by the Instituto Nacional de Salud Pública de México (INSP) and grants from CONACYT—FONSEC SSA/IMSS/ISSSTE-2011-01-161710, Mexico. GAM-N was recipient of a PhD fellowship from CONACYT. This study was also supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) and the Fondo Sectorial de Investigación en Salud y Seguridad Social, México. The supporting agency had no role in the study design; in the collection, analysis and interpretation of the data; in the preparation of the report; or in the decision to submit the article for publication. This work was submitted in partial fulfillment of the requirements for the PhD degree of GAM-N from the Doctoral Program in Health Sciences of the School of Public Health of Mexico.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V Madrid-Marina or A I Burguete-García.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Nava, G., Torres-Poveda, K., Lagunas-Martínez, A. et al. Cervical cancer-associated promoter polymorphism affects akna expression levels. Genes Immun 16, 43–53 (2015). https://doi.org/10.1038/gene.2014.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.60

This article is cited by

Search

Quick links