Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FoxP3 interacts with linker histone H1.5 to modulate gene expression and program Treg cell activity

Abstract

The forkhead box transcription factor FoxP3 controls the development and function of CD4+CD25+ regulatory T (Treg) cell. FoxP3 modulates gene expression in Treg cells by multiple epigenetic mechanisms that are not clearly defined. We identified FoxP3-interacting proteins in human T cells by co-immunoprecipitation/MS. We discovered that FoxP3 interacted with linker histone H1.5 via the leucine zipper (LZ) domain. Two independent IPEX patient-derived single residue mutations in the LZ of FoxP3 both abrogated its interaction with H1.5. Functionally, FoxP3 and H1.5 cooperatively repressed interleukin-2 (IL-2) expression in human T cells; and silencing of H1.5 expression inhibited the ability of FoxP3 to suppress IL-2 expression. We show that FoxP3 specifically enhanced H1.5 association at the IL-2 promoter, but reduce its association at the CTLA4 promoter, correlated with higher or lower histone acetylation of the respective promoters. Finally, silencing of H1.5 expression in human Treg cells impaired the Treg function to suppress target T cells. We conclude that FoxP3 interacts with H1.5 to alter its binding to target genes to modulate their expression and to program Treg function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27: 68–73.

    Article  CAS  Google Scholar 

  2. Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF . Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem 2001; 276: 37672–37679.

    Article  CAS  Google Scholar 

  3. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27: 20–21.

    Article  CAS  Google Scholar 

  4. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001; 27: 18–20.

    Article  CAS  Google Scholar 

  5. Fontenot JD, Gavin MA, Rudensky AY . Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330–336.

    Article  CAS  Google Scholar 

  6. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    Article  CAS  Google Scholar 

  7. Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 2004; 16: 1643–1656.

    Article  CAS  Google Scholar 

  8. Wang B, Lin D, Li C, Tucker P . Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J Biol Chem 2003; 278: 24259–24268.

    Article  CAS  Google Scholar 

  9. Li B, Samanta A, Song X, Iacono KT, Bembas K, Tao R et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 2007; 104: 4571–4576.

    Article  CAS  Google Scholar 

  10. Ziegler SF . FOXP3: of mice and men. Annu Rev Immunol 2006; 24: 209–226.

    Article  CAS  Google Scholar 

  11. Campbell DJ, Ziegler SF . FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol 2007; 7: 305–310.

    Article  CAS  Google Scholar 

  12. Chae WJ, Henegariu O, Lee SK, Bothwell AL . The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells. Proc Natl Acad Sci USA 2006; 103: 9631–9636.

    Article  CAS  Google Scholar 

  13. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006; 126: 375–387.

    Article  CAS  Google Scholar 

  14. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY . A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 2005; 6: 1142–1151.

    Article  CAS  Google Scholar 

  15. Setoguchi R, Hori S, Takahashi T, Sakaguchi S . Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 2005; 201: 723–735.

    Article  CAS  Google Scholar 

  16. Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007; 446: 685–689.

    Article  CAS  Google Scholar 

  17. Doenecke D, Albig W, Bode C, Drabent B, Franke K, Gavenis K et al. Histones: genetic diversity and tissue-specific gene expression. Histochem Cell Biol 1997; 107: 1–10.

    Article  CAS  Google Scholar 

  18. Fan Y, Nikitina T, Zhao J, Fleury TJ, Bhattacharyya R, Bouhassira EE et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 2005; 123: 1199–1212.

    Article  CAS  Google Scholar 

  19. Fan Y, Sirotkin A, Russell RG, Ayala J, Skoultchi AI . Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1(0) replacement subtype. Mol Cell Biol 2001; 21: 7933–7943.

    Article  CAS  Google Scholar 

  20. Fan Y, Nikitina T, Morin-Kensicki EM, Zhao J, Magnuson TR, Woodcock CL et al. H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol Cell Biol 2003; 23: 4559–4572.

    Article  CAS  Google Scholar 

  21. Lee H, Habas R, Abate-Shen C . MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science 2004; 304: 1675–1678.

    Article  CAS  Google Scholar 

  22. Jiang Q, Su H, Knudsen G, Helms W, Su L . Delayed functional maturation of natural regulatory T cells in the medulla of postnatal thymus: role of TSLP. BMC Immunol 2006; 7: 6.

    Article  Google Scholar 

  23. Antons AK, Wang R, Oswald-Richter K, Tseng M, Arendt CW, Kalams SA et al. Naive precursors of human regulatory T cells require FoxP3 for suppression and are susceptible to HIV infection. J Immunol 2008; 180: 764–773.

    Article  CAS  Google Scholar 

  24. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007; 445: 931–935.

    Article  CAS  Google Scholar 

  25. Lennox RW, Cohen LH . The histone H1 complements of dividing and nondividing cells of the mouse. J Biol Chem 1983; 258: 262–268.

    CAS  PubMed  Google Scholar 

  26. Li B, Samanta A, Song X, Furuuchi K, Iacono KT, Kennedy S et al. FOXP3 ensembles in T-cell regulation. Immunol Rev 2006; 212: 99–113.

    Article  CAS  Google Scholar 

  27. Trojer P, Li G, Sims III RJ, Vaquero A, Kalakonda N, Boccuni P et al. L3MBTL1, a histone-methylation-dependent chromatin lock. Cell 2007; 129: 915–928.

    Article  CAS  Google Scholar 

  28. Krishnakumar R, Gamble MJ, Frizzell KM, Berrocal JG, Kininis M, Kraus WL et al. Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 2008; 319: 819–821.

    Article  CAS  Google Scholar 

  29. Coffield VM, Jiang Q, Su L . A genetic approach to inactivating chemokine receptors using a modified viral protein. Nat Biotechnol 2003; 21: 1321–1327.

    Article  CAS  Google Scholar 

  30. Vitriol EA, Uetrecht AC, Shen F, Jacobson K, Bear JE . Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins. Proc Natl Acad Sci USA 2007; 104: 6702–6707.

    Article  CAS  Google Scholar 

  31. Holmes D, Knudsen G, Mackey-Cushman S, Su L . FoxP3 enhances HIV-1 gene expression by modulating NFkappaB occupancy at the long terminal repeat in human T cells. J Biol Chem 2007; 282: 15973–15980.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Yi Zhang, Art Skoultchi, Jenny Ting, Yue Xiong and members of the Su lab for critical reading and/or discussion of the manuscript. The project was supported by grants from NIH (AI048407 & AI077454 to LS, AI065303 to DU) and UNC training grant (106693-39-RFMT to SMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Su.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackey-Cushman, S., Gao, J., Holmes, D. et al. FoxP3 interacts with linker histone H1.5 to modulate gene expression and program Treg cell activity. Genes Immun 12, 559–567 (2011). https://doi.org/10.1038/gene.2011.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2011.31

Keywords

This article is cited by

Search

Quick links