Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Congenital toxoplasmosis: candidate host immune genes relevant for vertical transmission and pathogenesis

Abstract

Toxoplasma gondii infects a variety of vertebrate hosts, including humans. Transplacental passage of the parasite leads to congenital toxoplasmosis. A primary infection during the first weeks of gestation causes vertical transmission at low rate, although it causes major damage to the embryo. Transmission frequency increases to near 80% by the end of pregnancy, but the proportion of ill newborns is low. For transmission and pathogenesis, the parasite genetics is certainly important. Several host innate and adaptative immune response genes are induced during infection in adults, which control the rapidly replicating tachyzoite. The T helper 1 (Th1) response is protective, although it has to be modulated to avoid inflammatory damage. Paradoxical observations on this response pattern in congenital toxoplasmosis have been reported, as it may be protective or deleterious, inducing sterile abortion or favoring parasite transplacental passage. Regarding pregnancy, an early Th1 microenvironment is important for control of infectious diseases and successful implantation, although it has to be regulated to support trophoblast survival. Polymorphism of genes involved in these parallel phenomena, such as Toll-like receptors (TLRs), adhesins, cytokines, chemokines or their receptors, immunoglobulins or Fc receptors (FcRs), might be important in susceptibility for T. gondii vertical transmission, abortion or fetal pathology. In this study some examples are presented and discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Montoya JG, Liesenfeld O . Toxoplasmosis. Lancet 2004; 363: 1965–1976.

    Article  CAS  PubMed  Google Scholar 

  2. Dunn D, Wallon M, Peyron F, Petersen E, Peckham C, Gilbert R . Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counselling. Lancet 1999; 353: 1829–1833.

    Article  CAS  PubMed  Google Scholar 

  3. Pepe GJ, Albrecht ED . Actions of placental and fetal adrenal steroid hormones in primate pregnancy. Endocr Rev 1995; 16: 608–648.

    CAS  PubMed  Google Scholar 

  4. Wilczynski JR . Th1/Th2 cytokines balance -yin and yang of reproductive immunology. Eur J Obstet Gynecol Reprod Biol 2005; 122: 136–143.

    Article  CAS  PubMed  Google Scholar 

  5. Correa D, Caballero-Ortega H, Rico-Torres CP, Cañedo-Solares I, Ortiz-Alegría LB, Becerra-Torres E et al. Immunobiology of congenital toxoplasmosis. In: Terrazas I (ed). Advances in the Immunobiology of Parasitic Diseases. Research Signpost: Kerala, India, 2007, pp 199–224.

    Google Scholar 

  6. Abou-Bacar A, Pfaff AW, Letscher-Bru V, Filisetti D, Rajapakse R, Antoni E et al. Role of gamma interferon and T cells in congenital Toxoplasma transmission. Parasite Immunol 2004; 26: 315–318.

    Article  CAS  PubMed  Google Scholar 

  7. Cañedo-Solares I, Galván-Ramírez ML, Luna-Pastén H, Rodríguez-Pérez R, Ortiz-Alegría LB, Rico-Torres CP et al. Human congenital toxoplasmosis: specific IgG subclasses in mother/newborn pairs. Pediatr Infect Dis J 2008; 27: 469–474.

    Article  PubMed  Google Scholar 

  8. Denkers EY . From cells to signaling cascades: manipulation of innate immunity by Toxoplasma gondii. FEMS Immunol Med Microbiol 2003; 39: 193–203.

    Article  CAS  PubMed  Google Scholar 

  9. Mun HS, Aosai F, Norose K, Chen M, Piao LX, Takeuchi O et al. TLR2 as an essential molecule for protective immunity against Toxoplasma gondii infection. Int Immunol 2003; 15: 1081–1087.

    Article  CAS  PubMed  Google Scholar 

  10. Yarovinsky F, Sher A . Toll-like receptor recognition of Toxoplasma gondii. Int J Parasitol 2006; 36: 255–259.

    Article  CAS  PubMed  Google Scholar 

  11. Denkers EY, Gazzinelli RT . Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev 1998; 11: 569–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kelly MN, Kolls JK, Happel K, Schwartzman JD, Schwarzenberger P, Combe C et al. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect Immun 2005; 73: 617–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aliberti J, Reis e Sousa C, Schito M, Hieny S, Wells T, Huffnagle GB et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8 alpha+ dendritic cells. Nat Immunol 2000; 1: 83–87.

    Article  CAS  PubMed  Google Scholar 

  14. Aliberti J, Valenzuela JG, Carruthers V, Hieny S, Andersen J, Charest H et al. Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat Immunol 2003; 4: 485–490.

    Article  CAS  PubMed  Google Scholar 

  15. Khan IA, Murphy PM, Casciotti L, Schwartzman JD, Collins J, Gao JL et al. Mice lacking the chemokine receptor CCR1 show increased susceptibility to Toxoplasma gondii infection. J Immunol 2001; 166: 1930–1937.

    Article  CAS  PubMed  Google Scholar 

  16. Benevides L, Milanezi CM, Yamauchi LM, Benjamim CF, Silva JS, Silva NM . CCR2 receptor is essential to activate microbicidal mechanisms to control Toxoplasma gondii infection in the central nervous system. Am J Pathol 2008; 173: 741–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Del Rio L, Bennouna S, Salinas J, Denkers EY . CXCR2 deficiency confers impaired neutrophil recruitment and increased susceptibility during Toxoplasma gondii infection. J Immunol 2001; 167: 6503–6509.

    Article  CAS  PubMed  Google Scholar 

  18. Dunay IR, Damatta RA, Fux B, Presti R, Greco S, Colonna M et al. Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 2008; 29: 306–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roberts CW, Ferguson DJP, Jebbari H, Satoskar A, Bluethmann H, Alexander J . Different roles for interleukin-4 during the course of Toxoplasma gondii infection. Infect Immun 1996; 64: 897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alexander J, Jebbari H, Bluethmann H, Brombacher F, Roberts CW . The role of IL-4 in adult acquired and congenital toxoplasmosis. Int J Parasitol 1998; 28: 113–120.

    Article  CAS  PubMed  Google Scholar 

  21. Pleass RJ, Woof JM . Fc receptors and immunity to parasites. Trends Parasitol 2001; 17: 545–550.

    Article  CAS  PubMed  Google Scholar 

  22. Correa D, Cañedo-Solares I, Ortiz-Alegría LB, Caballero-Ortega H, Rico-Torres CP . Congenital and acquired toxoplasmosis: diversity and role of antibodies in different compartments of the host. Parasite Immunol 2007; 29: 651–660.

    Article  CAS  PubMed  Google Scholar 

  23. Gazzinelli RT, Wysocka M, Hieny S, Scharton-Kersten T, Cheever A, Kühn R et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-γ, and TNF-α. J Immunol 1996; 157: 798–805.

    CAS  PubMed  Google Scholar 

  24. Stumhofer JS, Laurence A, Wilson EH, Huang E, Tato CM, Johnson LM et al. Interleukin 27 negatively regulates the development of interleukin 17–producing T helper cells during chronic inflammation of the central nervous system. Nature Immunol 2006; 7: 937–945.

    Article  CAS  Google Scholar 

  25. Szekeres-Bartho J . Immunological relationship between the mother and the fetus. Int Rev Immunol 2002; 21: 471–495.

    Article  CAS  PubMed  Google Scholar 

  26. Chaouat G, Ledée-Bataille N, Dubanchet S, Zourbas S, Sandra O, Martal J . Th1/Th2 paradigm in pregnancy: paradigm lost? Cytokines in pregnancy/early abortion: reexamining the Th1/Th2 paradigm. Int Arch Allergy Immunol 2004; 134: 93–119.

    Article  PubMed  Google Scholar 

  27. Hannan NJ, Salamonsen LA . Role of chemokines in the endometrium and in embryo implantation. Curr Opin Obstet Gynecol 2007; 19: 266–272.

    Article  PubMed  Google Scholar 

  28. He YY, Du MR, Guo PF, He XJ, Zhou WH, Zhu XY et al. Regulation of C-C motif chemokine ligand 2 and its receptor in human decidual stromal cells by pregnancy-associated hormones in early gestation. Hum Reprod 2007; 22: 2733–2742.

    Article  CAS  PubMed  Google Scholar 

  29. Fraccaroli L, Alfieri J, Larocca L, Calafat M, Mor G, Leirós CP et al. Potential tolerogenic immune mechanism in a trophoblast cell line through the activation of chemokine-induced T cell death and regulatory T cell modulation. Hum Reprod 2009; 24: 166–175.

    Article  CAS  PubMed  Google Scholar 

  30. Jaleel MA, Tsai AC, Sarkar S, Freedman PV, Rubin LP . Stromal cell-derived factor-1 (SDF-1) signalling regulates human placental trophoblast cell survival. Mol Hum Reprod 2004; 10: 901–909.

    Article  CAS  PubMed  Google Scholar 

  31. Hannan NJ, Salamonsen LA . CX3CL1 and CCL14 regulate extracellular matrix and adhesion molecules in the trophoblast: potential roles in human embryo implantation. Biol Reprod 2008; 79: 58–65.

    Article  CAS  PubMed  Google Scholar 

  32. Moreau P, Adrian-Cabestre F, Menier C, Guiard V, Gourand L, Dausset J et al. IL-10 selectively induces HLA-G expression in human trophoblasts and monocytes. Int Immunol 1999; 11: 803–811.

    Article  CAS  PubMed  Google Scholar 

  33. Moreau P, Faure O, Lefebvre S, Ibrahim EC, O’Brien M, Gourand L et al. Glucocorticoid hormones upregulate levels of HLA-G transcripts in trophoblasts. Transplant Proc 2001; 33: 2277–2280.

    Article  CAS  PubMed  Google Scholar 

  34. Viganò P, Gaffuri B, Somigliana E, Infantino M, Vignali M, Di Blasio AM . Interleukin-10 is produced by human uterine natural killer cells but does not affect their production of interferon-gamma. Mol Hum Reprod 2001; 7: 971–977.

    Article  PubMed  Google Scholar 

  35. Jones RL, Stoikos C, Findlay JK, Salamonsen LA . TGF-β superfamily expression and actions in the endometrium and placenta. Reproduction 2006; 132: 217–232.

    Article  CAS  PubMed  Google Scholar 

  36. Chaouat G . The Th1/Th2 paradigm: still important in pregnancy? Semin Immunopathol 2007; 29: 95–113.

    Article  PubMed  Google Scholar 

  37. Mack DG, Johnson JJ, Roberts F, Roberts CW, Estes RG, David C et al. HLA-class II genes modify outcome of Toxoplasma gondii infection. Int J Parasitol 1999; 29: 1351–1358.

    Article  CAS  PubMed  Google Scholar 

  38. Kanai T, Fujii T, Kozuma S, Yamashita T, Miki A, Kikuchi A et al. Soluble HLA-G influences the release of cytokines from allogeneic peripheral blood mononuclear cells in culture. Mol Hum Reprod 2001; 7: 195–200.

    Article  CAS  PubMed  Google Scholar 

  39. Hill JA . Cytokines considered critical in pregnancy. Am J Reprod Immunol 1992; 28: 123–126.

    Article  CAS  PubMed  Google Scholar 

  40. Lieberman LA, Hunter CA . The role of cytokines and their signaling pathways in the regulation of immunity to Toxoplasma gondii. Int Rev Immunol 2002; 21: 373–403.

    Article  CAS  PubMed  Google Scholar 

  41. Senegas A, Villard O, Neuville A, Marcellin L, Pfaff AW, Steinmetz T et al. Toxoplasma gondii-induced foetal resorption in mice involves interferon-gamma-induced apoptosis and spiral artery dilation at the maternofoetal interface. Int J Parasitol 2009; 39: 481–487.

    Article  CAS  PubMed  Google Scholar 

  42. Hampson J, McLaughlin PJ, Johnson PM . Low-affinity receptors for tumor necrosis factor-alpha, interferon-gamma and granulocyte-macrophage colony-stimulating factor are expressed on human placental syncytiotrophoblast. Immunology 1993; 79: 485–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bream JH, Ping A, Zhang X, Winkler C, Young HA . A single nucleotide polymorphism in the proximal IFN-gamma promoter alters control of gene transcription. Genes Immun 2002; 3: 165–169.

    Article  CAS  PubMed  Google Scholar 

  44. Barbosa BF, Silva DAO, Costa IN, Mineo JR, Ferro EAV . BeWo trophoblast cell susceptibility to Toxoplasma gondii is increased by interferon-γ, interleukin-10 and transforming growth factor-β1. Clin Exp Immunol 2008; 151: 536–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bidwell J, Keen L, Gallagher G, Kimberly R, Huizinga T, McDermott MF et al. Cytokine gene polymorphism in human disease: on-line databases. Suppl 1. Genes Immun 2001; 2: 61–70.

    Article  CAS  PubMed  Google Scholar 

  46. Keen LJ . The extent and analysis of cytokine and cytokine receptor gene polymorphism. Transpl Immunol 2002; 10: 143–146.

    Article  CAS  PubMed  Google Scholar 

  47. Eskdale J, Gallagher G, Verweij CL, Keijsers V, Westendorp RGJ, Huizinga TWJ . Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc Natl Acad Sci 1998; 95: 9465–9470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abou-Bacar A, Pfaff AW, Georges S, Letscher-Bru V, Filisetti D, Villard O et al. Role of NK cells and gamma interferon in transplacental passage of Toxoplasma gondii in a mouse model of primary infection. Infect Immun 2004; 72: 1397–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pfaff AW, Georges S, Abou-Bacar A, Letscher-Bru V, Klein JP, Mousli M et al. Toxoplasma gondii regulates ICAM-1 mediated monocyte adhesion to trophoblasts. Immunol Cell Biol 2005; 83: 483–489.

    Article  CAS  PubMed  Google Scholar 

  50. Ferro EA, Mineo JR, Ietta F, Bechi N, Romagnoli R, Silva DA et al. Macrophage migration inhibitory factor is up-regulated in human first-trimester placenta stimulated by soluble antigen of Toxoplasma gondii, resulting in increased monocyte adhesion on villous explants. Am J Pathol 2008; 172: 50–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barragán A, Brossier F, Sibley LD . Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cell Microbiol 2005; 7: 561–568.

    Article  PubMed  Google Scholar 

  52. Arcuri F, Cintorino M, Vatti R, Carducci A, Liberatori S, Paulesu L . Expression of macrophage migration inhibitory factor transcript and protein by first-trimester human trophoblasts. Biol Reprod 1999; 60: 1299–1303.

    Article  CAS  PubMed  Google Scholar 

  53. Xiao J, Garcia-Lloret M, Winkler-Lowen B, Miller R, Simpson K, Guilbert LJ . ICAM-1-mediated adhesion of peripheral blood monocytes to the maternal surface of placental syncytiotrophoblasts: implications for placental villitis. Am J Pathol 1997; 150: 1845–1860.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ferro EA, Bevilacqua E, Favoreto-Junior S, Silva DA, Mortara RA, Mineo JR . Calomys callosus (Rodentia: Cricetidae) trophoblast cells as host cells to Toxoplasma gondii in early pregnancy. Parasitol Res 1999; 85: 647–654.

    Article  CAS  PubMed  Google Scholar 

  55. Ferro EAV, Silva DAO, Bevilacqua E, Mineo JR . Effect of Toxoplasma gondii infection kinetics on trophoblast cell population in Calomys callosus, a model of congenital toxoplasmosis. Infect Immun 2002; 70: 7089–7094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gaffuri B, Viganò P, Nozza A, Gornati G, Di Blasio AM, Vignali M . Expression of intercellular adhesion molecule-1 messenger ribonucleic acid and protein in human term placental cells and its modulation by pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor α). Biol Reprod 1998; 58: 1003–1008.

    Article  CAS  PubMed  Google Scholar 

  57. Craig A, Fernandez-Reyes D, Mesri M, McDowall A, Altieri DC, Hogg N et al. A functional analysis of a natural variant of intercellular adhesión molecule-1 (ICAM-1 Kilifi). Hum Mol Genet 2000; 9: 525–530.

    Article  CAS  PubMed  Google Scholar 

  58. Renner P, Roger T, Calandra T . Macrophage migration inhibitory factor: gene polymorphisms and susceptibility to inflammatory diseases. Clin Infect Dis 2005; 41: S513–S519.

    Article  CAS  PubMed  Google Scholar 

  59. Alexander J, Hunter CA . Immunoregulation during toxoplasmosis. Chem Immunol 1998; 70: 81–102.

    Article  CAS  PubMed  Google Scholar 

  60. Elahi MM, Asotra K, Matata BM, Mastana SS . Tumor necrosis factor alpha -308 gene locus promoter polymorphism: an analysis of association with health and disease. Biochim Biophys Acta 2009; 1792: 163–172.

    Article  CAS  PubMed  Google Scholar 

  61. McDermott DH, Zimmerman PA, Guignard F, Kleeberger CA, Leitman SF, Murphy PM . CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS). Lancet 1998; 352: 866–870.

    Article  CAS  PubMed  Google Scholar 

  62. Faure S, Meyer L, Costagliola D, Vaneensberghe C, Genin E, Autran B et al. Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science 2000; 287: 2274–2277.

    Article  CAS  PubMed  Google Scholar 

  63. Sahagun-Ruiz A, Colla JS, Juhn J, Gao JL, Murphy P, McDermott DH . Contrasting evolution of the human leukocyte N-formylpeptide receptor subtypes FPR and FPRl1R. Genes Immun 2001; 2: 335–342.

    Article  CAS  PubMed  Google Scholar 

  64. Khan IA, Thomas SY, Moretto MM, Lee FS, Islam SA, Combe C et al. CCR5 is essential for NK cell trafficking and host survival following Toxoplasma gondii infection. PLoS Pathog 2006; 2: 484–500.

    Article  CAS  Google Scholar 

  65. Galimberti D, Fenoglio C, Lovati C, Gatti A, Guidi I, Venturelli E et al. CCR2-64I polymorphism and CCR5Delta32 deletion in patients with Alzheimer's disease. J Neurol Sci 225: 79–83.

  66. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86: 367–377.

    Article  CAS  PubMed  Google Scholar 

  67. Pedersen BR, Kamwendo D, Blood M, Mwapasa V, Molyneux M, North K et al. CCR5 haplotypes and mother-to-child HIV transmission in Malawi. PLoS One 2007; 2: e838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Watanabe K, Iwai N, Tachibana M, Furuoka H, Suzuki H, Watarai M . Regulated upon activation normal T-cell expressed and secreted (RANTES) contributes to abortion caused by Brucella abortus infection in pregnant mice. J Vet Med Sci 2008; 70: 681–686.

    Article  CAS  PubMed  Google Scholar 

  69. Liu H, Chao D, Nakayama EE, Taguchi H, Goto M, Xin X et al. Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc Natl Acad Sci 1999; 96: 4581–4585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhernakova A, Alizadeh BZ, Eerligh P, Hanifi-Moghaddam P, Schloot NC, Diosdado B et al. Genetic variants of RANTES are associated with serum RANTES level and protection for type 1 diabetes. Genes Immun 2006; 7: 544–549.

    Article  CAS  PubMed  Google Scholar 

  71. Scanga CA, Aliberti J, Jankovic D, Tilloy F, Bennouna S, Denkers EY et al. Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite induced IL-12 production by dendritic cells. J Immunol 2002; 168: 5997–6001.

    Article  CAS  PubMed  Google Scholar 

  72. Gazzinelli RT, Denkers EY . Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism. Nat Rev Immunol 2006; 6: 895–906.

    Article  CAS  PubMed  Google Scholar 

  73. Ma Y, Krikun G, Abrahams VM, Mor G, Guller S . Cell type-specific expression and function of toll-like receptors 2 and 4 in human placenta: implications in fetal infection. Placenta 2007; 28: 1024–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Patni S, Wynen LP, Seager AL, Morgan G, White JO, Thornton CA . Expression and activity of Toll-like receptor 1-9 in the human term placenta and changes associated with labor at term. Biol Reprod 2009; 80: 243–248.

    Article  CAS  PubMed  Google Scholar 

  75. Krediet TG, Wiertsema SP, Vossers MJ, Hoeks SB, Fleer A, Ruven HJ et al. Toll-like receptor 2 polymorphism is associated with preterm birth. Pediatr Res 2007; 4: 474–476.

    Article  CAS  Google Scholar 

  76. Schmitt C, Humeny A, Becker CM, Brune K, Pahl A . Polymorphisms of TLR4: rapid genotyping and reduced response to lipopolysaccharide of TLR4 mutant alleles. Clin Chem 2002; 48: 1661–1667.

    Article  CAS  PubMed  Google Scholar 

  77. Schwartz DA, Cook DN . Polimorphisms of the Toll-like receptors and human disease. Clin Infect Dis 2005; 41: S403–S407.

    Article  CAS  PubMed  Google Scholar 

  78. de Moraes-Pinto MI, Vince GS, Flanagan BF, Hart CA, Johnson PM . Localization of IL-4 and IL-4 receptors in the human term placenta, decidua and amniochorionic membranes. Immunology 1997; 90: 87–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gonzales JR, Gröger S, Haley G, Bödeker RH, Meyle J . The interleukin-4 -34TT and -590TT genotype is correlated with increased expression and protein production in aggressive periodontitis. Mol Immunol 2010; 4: 701–705.

    Article  CAS  Google Scholar 

  80. Street ME, Seghini P, Ziveri MA, Fieni S, Volta C, Neri TM et al. Interleukin-6 and insulin-like growth factor system relationships and differences in the human placenta and fetus from the 35th week of gestation. Growth Horm IGF Res 2006; 16: 365–372.

    Article  CAS  PubMed  Google Scholar 

  81. Foster CB, Lehrnbecher T, Samuels S, Stein S, Mol F, Metcalf JA et al. An IL6 promoter polymorphism is associated with a lifetime risk of development of Kaposi sarcoma in men infected with human immunodeficiency virus. Blood 2000; 96: 2562–2567.

    Article  CAS  PubMed  Google Scholar 

  82. Saji F, Samejima Y, Kamiura S, Koyama M . Dynamics of immunoglobulins at the feto–maternal interface. Rev Reprod 1999; 4: 81–89.

    Article  CAS  PubMed  Google Scholar 

  83. Cederqvist LL, Ewool LC, Bonsnes RW, Litwin SD . Detectability and pattern of immunoglobulins in normal amniotic fluid throughout gestation. Am J Obstet Gynecol 1978; 15: 220–224.

    Article  Google Scholar 

  84. McLeod R, Dowel M . Basic immunology: the fetus and the newborn. In: Ambroise-Thomas P, Petersen E (eds). Congenital Toxoplasmosis: Scientific Background, Clinical Management and Control. Springer-Verlag: France, 2000, pp 37–68.

    Chapter  Google Scholar 

  85. de Lange GG . Polymorphisms of human immunoglobulins: Gm, Am, Em and Km allotypes. Exp Clin Immunogenet 1989; 6: 7–17.

    CAS  PubMed  Google Scholar 

  86. Cerutti N, Dugoujon JM, Guitard E, Rabino Massa E . Gm and Km immunoglobulin allotypes in Sicily. Immunogenetics 2004; 55: 674–681.

    Article  CAS  PubMed  Google Scholar 

  87. Pandey JP, French MA . Gm phenotypes influence the concentrations of the four subclasses of immunoglobulin G in normal human serum. Hum Immunol 1996; 51: 99–102.

    Article  CAS  PubMed  Google Scholar 

  88. Capel PJA, van de Winkel JGJ, van den Herik-Oudijk IE, Verbeek JS . Heterogeneity of human IgG Fc receptors. Immunomethods 1994; 4: 25–34.

    Article  CAS  PubMed  Google Scholar 

  89. van de Winkel JGJ, Capel PJA . Overview: Fc receptors. Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol Today 1993; 14: 215–221.

    Article  CAS  PubMed  Google Scholar 

  90. Parren PWH, Warmerdam PAM, Boeije LCM, Arts J, Westerdaal NAC, Vlug A et al. On the interaction of IgG subclasses with the low affinity FcγRIIa (CD32) on human monocytes, neutrophils, and platelets. Analysis of a functional polymorphism to human IgG2. J Clin Invest 1992; 90: 1537–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Salmon JE, Edberg JC, Brogle NL, Kimberly RP . Allelic polymorphisms of human Fcγ receptor IIA and Fcγ receptor IIIB independent mechanisms for differences in human phagocyte function. J Clin Invest 1992; 89: 1274–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. de Haas M, Koene HR, Kleijer M, de Vries E, Simsek S, van Tol MJ et al. A triallelic Fc gamma receptor type IIIA polymorphism influences the binding of human IgG by NK cell Fc gamma RIIIa. J Immunol 1996; 156: 2948–2955.

    CAS  PubMed  Google Scholar 

  93. Ory PA, Clark MR, Kwoh EE, Clarkson SB, Goldstein IM . Sequences of complementary DNAs that encode the NA1 and NA2 forms of Fc receptor III on human neutrophils. J Clin Invest 1989; 84: 1688–1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Simister NE, Story CM . Human placental Fc receptors and the transmission of antibodies from mother to fetus. J Reprod Immunol 1997; 37: 1–23.

    Article  CAS  PubMed  Google Scholar 

  95. Bright NA, Ockleford CD, Anwar M . Ontogeny and distribution of Fc gamma receptors in the human placenta. Transport or immune surveillance? J Anat 1994; 184: 297–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sachs UH, Socher I, Braeunlich CG, Kroll H, Bein G, Santoso S . A variable number of tandem repeats polymorphism influences the transcriptional activity of the neonatal Fc receptor a-chain promoter. Immunology 2006; 119: 83–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Maidji E, McDonagh S, Genbacev O, Tabata T, Pereira L . Maternal antibodies enhance or prevent cytomegalovirus infection in the placenta by neonatal Fc receptor-mediated transcytosis. Am J Pathol 2006; 168: 1210–1226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu J, Ji C, Xie F, Langefeld CD, Qian K, Gibson AW et al. FcαRI (CD89) alleles determine the proinflammatory potential of serum IgA. J Immunol 2007; 178: 3973–3982.

    Article  CAS  PubMed  Google Scholar 

  99. Kanada S, Nakano N, Potaczek DP, Maeda K, Shimokawa N, Niwa Y et al. Two different transcription factors discriminate the -315C>T polymorphism of the Fc epsilon RI alpha gene: binding of Sp1 to -315C and of a high mobility group-related molecule to -315T. J Immunol 2008; 180: 8204–8210.

    Article  CAS  PubMed  Google Scholar 

  100. Djurkovic-Djakovic O, Roman S, Nobre R, Couvreur J, Thulliez P . Serologic rebounds after one-year-long treatment for congenital toxoplasmosis. Pediatr Infect Dis J 2000; 19: 81–83.

    Article  CAS  PubMed  Google Scholar 

  101. Wallon M, Cozon G, Ecocherd R, Lewin P, Peyron F . Serological rebound in congenital toxoplasmosis: long-term follow-up of 133 children. Eur J Pediatr 2001; 160: 534–540.

    Article  CAS  PubMed  Google Scholar 

  102. Jamieson SE, de Roubaix LA, Cortina-Borja M, Tan HK, Mui EJ, Cordell HJ et al. Genetic and epigenetic factors at COL2A1 and ABCA4 influence clinical outcome in congenital toxoplasmosis. PLoS One 2008; 3: e2285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This review work was partially supported by Grants 43070-M and 69666 from CONACyT, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Correa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz-Alegría, L., Caballero-Ortega, H., Cañedo-Solares, I. et al. Congenital toxoplasmosis: candidate host immune genes relevant for vertical transmission and pathogenesis. Genes Immun 11, 363–373 (2010). https://doi.org/10.1038/gene.2010.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.21

Keywords

This article is cited by

Search

Quick links