Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RGMA and IL21R show association with experimental inflammation and multiple sclerosis

Abstract

Rat chromosome 1 harbors overlapping quantitative trait loci (QTL) for cytokine production and experimental models of inflammatory diseases. We fine-dissected this region that regulated cytokine production, myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), anti-MOG antibodies and pristane-induced arthritis (PIA) in advanced intercross lines (AILs). Analysis in the tenth and twelfth generation of AILs resolved the region in two narrow QTL, Eae30 and Eae31. Eae30 showed linkage to MOG-EAE, anti-MOG antibodies and levels of interleukin-6 (IL-6). Eae31 showed linkage to EAE, PIA, anti-MOG antibodies and levels of tumor necrosis factor (TNF) and IL-6. Confidence intervals defined a limited set of potential candidate genes, with the most interesting being RGMA, IL21R and IL4R. We tested the association with multiple sclerosis (MS) in a Nordic case–control material. A single nucleotide polymorphism in RGMA associated with MS in males (odds ratio (OR)=1.33). Polymorphisms of RGMA also correlated with changes in the expression of interferon-γ (IFN-γ) and TNF in cerebrospinal fluid of MS patients. In IL21R, there was one positively associated (OR=1.14) and two protective (OR=0.87 and 0.68) haplotypes. One of the protective haplotypes correlated to lower IFN-γ expression in peripheral blood mononuclear cells of MS patients. We conclude that RGMA and IL21R and their pathways are crucial in MS pathogenesis and warrant further studies as potential biomarkers and therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ebers GC . Environmental factors and multiple sclerosis. Lancet Neurol 2008; 7: 268–277.

    Article  PubMed  Google Scholar 

  2. Chao MJ, Barnardo MC, Lincoln MR, Ramagopalan SV, Herrera BM, Dyment DA et al. HLA class I alleles tag HLA-DRB1*1501 haplotypes for differential risk in multiple sclerosis susceptibility. Proc Natl Acad Sci U S A 2008; 105: 13069–13074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lincoln MR, Montpetit A, Cader MZ, Saarela J, Dyment DA, Tiislar M et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 2005; 37: 1108–1112.

    Article  CAS  PubMed  Google Scholar 

  4. Olerup O, Hillert J . HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 1991; 38: 1–15.

    Article  CAS  PubMed  Google Scholar 

  5. Olsson T, Hillert J . The genetics of multiple sclerosis and its experimental models. Curr Opin Neurol 2008; 21: 255–260.

    Article  PubMed  Google Scholar 

  6. Sawcer S . The complex genetics of multiple sclerosis: pitfalls and prospects. Brain 2008; 131 (Part 12): 3118–3131.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007; 357: 851–862.

    Article  CAS  PubMed  Google Scholar 

  8. Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstrom E, Khademi M et al. Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 2007; 39: 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  9. Weber F, Fontaine B, Cournu-Rebeix I, Kroner A, Knop M, Lutz S et al. IL2RA and IL7RA genes confer susceptibility for multiple sclerosis in two independent European populations. Genes Immun 2008; 9: 259–263.

    Article  CAS  PubMed  Google Scholar 

  10. International Multiple Sclerosis Genetics Consortium (IMSGC). Refining genetic associations in multiple sclerosis. Lancet Neurol 2008; 7: 567–569.

    Article  Google Scholar 

  11. Australia New Zealand Multiple Sclerosis Genetics Consortium (ANZgene). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet 2009; 41: 824–828.

    Article  Google Scholar 

  12. International Multiple Sclerosis Genetics Consortium (IMSGC). The expanding genetic overlap between multiple sclerosis and type I diabetes. Genes Immun 2009; 10: 11–14.

    Article  Google Scholar 

  13. Rubio JP, Stankovich J, Field J, Tubridy N, Marriott M, Chapman C et al. Replication of KIAA0350, IL2RA, RPL5 and CD58 as multiple sclerosis susceptibility genes in Australians. Genes Immun 2008; 9: 624–630.

    Article  CAS  PubMed  Google Scholar 

  14. De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 2009; 41: 776–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vyse TJ, Todd JA . Genetic analysis of autoimmune disease. Cell 1996; 85: 311–318.

    Article  CAS  PubMed  Google Scholar 

  16. Jagodic M, Kornek B, Weissert R, Lassmann H, Olsson T, Dahlman I . Congenic mapping confirms a locus on rat chromosome 10 conferring strong protection against myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. Immunogenetics 2001; 53: 410–415.

    Article  CAS  PubMed  Google Scholar 

  17. Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J et al. Progress and prospects in rat genetics: a community view. Nat Genet 2008; 40: 516–522.

    Article  CAS  PubMed  Google Scholar 

  18. Steinman L . Assessment of animal models for MS and demyelinating disease in the design of rational therapy. Neuron 1999; 24: 511–514.

    Article  CAS  PubMed  Google Scholar 

  19. Weissert R, Wallstrom E, Storch MK, Stefferl A, Lorentzen J, Lassmann H et al. MHC haplotype-dependent regulation of MOG-induced EAE in rats. J Clin Invest 1998; 102: 1265–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Issazadeh S, Lorentzen JC, Mustafa MI, Hojeberg B, Mussener A, Olsson T . Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats: persistent mRNA expression of proinflammatory cytokines and absent expression of interleukin-10 and transforming growth factor-beta. J Neuroimmunol 1996; 69: 103–115.

    Article  CAS  PubMed  Google Scholar 

  21. Olsson T, Zhi WW, Hojeberg B, Kostulas V, Jiang YP, Anderson G et al. Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. J Clin Invest 1990; 86: 981–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Olsson T . Cytokine-producing cells in experimental autoimmune encephalomyelitis and multiple sclerosis. Neurology 1995; 45: S11–S15.

    Article  CAS  PubMed  Google Scholar 

  23. Olofsson P, Nordquist N, Vingsbo-Lundberg C, Larsson A, Falkenberg C, Pettersson U et al. Genetic links between the acute-phase response and arthritis development in rats. Arthritis Rheum 2002; 46: 259–268.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

    Article  CAS  PubMed  Google Scholar 

  25. Vingsbo-Lundberg C, Nordquist N, Olofsson P, Sundvall M, Saxne T, Pettersson U et al. Genetic control of arthritis onset, severity and chronicity in a model for rheumatoid arthritis in rats. Nat Genet 1998; 20: 401–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu H, Wallstrom E, Becanovic K, Dahlman I, Lorentzen JC . Identification of rat quantitative trait loci that regulate LPS-induced pro-inflammatory cytokine responses. Scand J Immunol 2002; 56: 248–253.

    Article  CAS  PubMed  Google Scholar 

  27. Bergsteinsdottir K, Yang HT, Pettersson U, Holmdahl R . Evidence for common autoimmune disease genes controlling onset, severity, and chronicity based on experimental models for multiple sclerosis and rheumatoid arthritis. J Immunol 2000; 164: 1564–1568.

    Article  CAS  PubMed  Google Scholar 

  28. Lu S, Nordquist N, Holmberg J, Olofsson P, Pettersson U, Holmdahl R . Both common and unique susceptibility genes in different rat strains with pristane-induced arthritis. Eur J Hum Genet 2002; 10: 475–483.

    Article  CAS  PubMed  Google Scholar 

  29. Jagodic M, Becanovic K, Sheng JR, Wu X, Backdahl L, Lorentzen JC et al. An advanced intercross line resolves Eae18 into two narrow quantitative trait loci syntenic to multiple sclerosis candidate loci. J Immunol 2004; 173: 1366–1373.

    Article  CAS  PubMed  Google Scholar 

  30. Zou GY . On the estimation of additive interaction by use of the four-by-two table and beyond. Am J Epidemiol 2008; 168: 212–224.

    Article  PubMed  Google Scholar 

  31. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  32. Mirel DB, Barcellos LF, Wang J, Hauser SL, Oksenberg JR, Erlich HA . Analysis of IL4R haplotypes in predisposition to multiple sclerosis. Genes Immun 2004; 5: 138–141.

    Article  CAS  PubMed  Google Scholar 

  33. Suppiah V, Goris A, Alloza I, Heggarty S, Dubois B, Carton H et al. Polymorphisms in the interleukin-4 and IL-4 receptor genes and multiple sclerosis: a study in Spanish-Basque, Northern Irish and Belgian populations. Int J Immunogenet 2005; 32: 383–388.

    Article  CAS  PubMed  Google Scholar 

  34. Quirico-Santos T, Suppiah V, Heggarty S, Caetano R, Alves-Leon S, Vandenbroeck K . Study of polymorphisms in the interleukin-4 and IL-4 receptor genes in a population of Brazilian patients with multiple sclerosis. Arq Neuropsiquiatr 2007; 65: 15–19.

    Article  PubMed  Google Scholar 

  35. Monnier PP, Sierra A, Macchi P, Deitinghoff L, Andersen JS, Mann M et al. RGM is a repulsive guidance molecule for retinal axons. Nature 2002; 419: 392–395.

    Article  CAS  PubMed  Google Scholar 

  36. Matsunaga E, Chedotal A . Repulsive guidance molecule/neogenin: a novel ligand-receptor system playing multiple roles in neural development. Dev Growth Differ 2004; 46: 481–486.

    Article  CAS  PubMed  Google Scholar 

  37. Matsunaga E, Nakamura H, Chedotal A . Repulsive guidance molecule plays multiple roles in neuronal differentiation and axon guidance. J Neurosci 2006; 26: 6082–6088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamashita T, Mueller BK, Hata K . Neogenin and repulsive guidance molecule signaling in the central nervous system. Curr Opin Neurobiol 2007; 17: 29–34.

    Article  CAS  PubMed  Google Scholar 

  39. De Vries M, Cooper HM . Emerging roles for neogenin and its ligands in CNS development. J Neurochem 2008; 106: 1483–1492.

    Article  CAS  PubMed  Google Scholar 

  40. Schwab JM, Monnier PP, Schluesener HJ, Conrad S, Beschorner R, Chen L et al. Central nervous system injury-induced repulsive guidance molecule expression in the adult human brain. Arch Neurol 2005; 62: 1561–1568.

    Article  PubMed  Google Scholar 

  41. Gracie JA, Bradley JA . Interleukin-12 induces interferon-gamma-dependent switching of IgG alloantibody subclass. Eur J Immunol 1996; 26: 1217–1221.

    Article  CAS  PubMed  Google Scholar 

  42. Hata K, Fujitani M, Yasuda Y, Doya H, Saito T, Yamagishi S et al. RGMa inhibition promotes axonal growth and recovery after spinal cord injury. J Cell Biol 2006; 173: 47–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Conrad S, Genth H, Hofmann F, Just I, Skutella T . Neogenin-RGMa signaling at the growth cone is bone morphogenetic protein-independent and involves RhoA, ROCK, and PKC. J Biol Chem 2007; 282: 16423–16433.

    Article  CAS  PubMed  Google Scholar 

  44. Kubo T, Endo M, Hata K, Taniguchi J, Kitajo K, Tomura S et al. Myosin IIA is required for neurite outgrowth inhibition produced by repulsive guidance molecule. J Neurochem 2008; 105: 113–126.

    Article  CAS  PubMed  Google Scholar 

  45. Paintlia AS, Paintlia MK, Singh AK, Singh I . Inhibition of rho family functions by lovastatin promotes myelin repair in ameliorating experimental autoimmune encephalomyelitis. Mol Pharmacol 2008; 73: 1381–1393.

    Article  CAS  PubMed  Google Scholar 

  46. Walters CE, Pryce G, Hankey DJ, Sebti SM, Hamilton AD, Baker D et al. Inhibition of Rho GTPases with protein prenyltransferase inhibitors prevents leukocyte recruitment to the central nervous system and attenuates clinical signs of disease in an animal model of multiple sclerosis. J Immunol 2002; 168: 4087–4094.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Z, Schittenhelm J, Meyermann R, Schluesener HJ . Lesional accumulation of RhoA(+) cells in brains of experimental autoimmune encephalomyelitis and multiple sclerosis. Neuropathol Appl Neurobiol 2008; 34: 231–240.

    Article  CAS  PubMed  Google Scholar 

  48. Hackstein H, Bitsch A, Bohnert A, Hofmann H, Weber F, Ohly A et al. Analysis of interleukin-4 receptor alpha chain variants in multiple sclerosis. J Neuroimmunol 2001; 113: 240–248.

    Article  CAS  PubMed  Google Scholar 

  49. Webb R, Merrill JT, Kelly JA, Sestak A, Kaufman KM, Langefeld CD et al. A polymorphism within IL21R confers risk for systemic lupus erythematosus. Arthritis Rheum 2009; 60: 2402–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spolski R, Leonard WJ . Interleukin-21: Basic biology and implications for cancer and autoimmunity. Annual Review of Immunology 2008; 26: 57–79.

    Article  CAS  PubMed  Google Scholar 

  51. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B et al. TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study. N Engl J Med 2007; 357: 1199–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baranzini SE, Wang J, Gibson RA, Galwey N, Naegelin Y, Barkhof F et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet 2009; 18: 767–778.

    Article  CAS  PubMed  Google Scholar 

  53. Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier MV et al. Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 1994; 153: 4349–4356.

    CAS  PubMed  Google Scholar 

  54. Carlson BC, Jansson AM, Larsson A, Bucht A, Lorentzen JC . The endogenous adjuvant squalene can induce a chronic T-cell-mediated arthritis in rats. Am J Pathol 2000; 156: 2057–2065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Broman KW, Wu H, Sen S, Churchill GA . R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003; 19: 889–890.

    Article  CAS  PubMed  Google Scholar 

  56. Lander ES, Botstein D . Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989; 121: 185–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Manichaikul A, Dupuis J, Sen S, Broman KW . Poor performance of bootstrap confidence intervals for the location of a quantitative trait locus. Genetics 2006; 174: 481–489.

    Article  PubMed  PubMed Central  Google Scholar 

  58. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121–127.

    Article  CAS  PubMed  Google Scholar 

  59. Roos IM, Kockum I, Hillert J . The interleukin 23 receptor gene in multiple sclerosis: a case-control study. J Neuroimmunol 2008; 194: 173–180.

    Article  CAS  PubMed  Google Scholar 

  60. Isler JA, Vesterqvist OE, Burczynski ME . Analytical validation of genotyping assays in the biomarker laboratory. Pharmacogenomics 2007; 8: 353–368.

    Article  CAS  PubMed  Google Scholar 

  61. Ekelund E, Saaf A, Tengvall-Linder M, Melen E, Link J, Barker J et al. Elevated expression and genetic association links the SOCS3 gene to atopic dermatitis. Am J Hum Genet 2006; 78: 1060–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dudbridge F . Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 2008; 66: 87–98.

    Article  PubMed  Google Scholar 

  63. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N . Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 2004; 96: 434–442.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swedish Research council; the Swedish foundation for neurologically handicapped (NHR), Bibbi and Nils Jensens Foundation, Montel Williams Foundation, Söderbergs Foundation, the fp 6 EU programs Neuropromise (LSHM-CT-2005-018637 and Euratools (LSHG-CT-2005-019015). The Norwegian part of the study was supported by Norwegian Foundation for Health and Rehabilitation (2004/2/0125) and Odd Fellow MS society, Norway. The Norwegian Bone Marrow Donor Registry is thanked for its collaboration in the establishment of the Norwegian control material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Nohra.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nohra, R., Beyeen, A., Guo, J. et al. RGMA and IL21R show association with experimental inflammation and multiple sclerosis. Genes Immun 11, 279–293 (2010). https://doi.org/10.1038/gene.2009.111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.111

Keywords

This article is cited by

Search

Quick links