Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity

Abstract

c-Myc is a proto-oncogenic transcription factor and its rapid turnover mediated by the ubiquitin–proteasome system is critical for maintaining normal cellular homeostasis. Multiple ubiquitin ligases have been assigned for c-Myc regulation till date. However, the available data suggest for the possible existence of additional E3 ligase(s). Here, we report a new E3 ligase for c-Myc, the carboxyl terminus of Hsc70-interacting protein or CHIP, which is a chaperone-associated Ubox-containing E3 ligase. In this report, we show that CHIP interacts and ubiquitinates c-Myc, thus targeting it for proteasome-mediated degradation. Overexpression of CHIP could accelerate the turnover rate of c-Myc protein. Conversely, knockdown of CHIP by RNAi stabilizes endogenous c-Myc. The interaction between CHIP and c-Myc depends on the N-terminally located tetratricopeptide repeats of CHIP, which has been implicated as a chaperone-binding motif. Inhibition of Hsp90 chaperone activity by 17-N-allylamino-17-demethoxygeldanamycin reduces c-Myc protein level. We found that the association between CHIP and c-Myc is dependent on the chaperones; particularly Hsp70. CHIP antagonizes the transcriptional activity of c-Myc and decreases the abundance of the transcripts of its target genes. Overall, CHIP-knockdown increases malignant behavior of C6 glioma cells. To the best of our knowledge, this is the first report of c-Myc being regulated by a bona-fide chaperone-associated E3 ligase in HEK293 as well as glioma cells. Because CHIP has been reported earlier to be negatively regulating Akt1, BCR-ABL and hTERT, and now c-Myc, the present study may strengthen the view that CHIP acts as a tumor suppressor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

CHIP:

carboxyl terminus of Hsc70-interacting protein

H&E:

haematoxylin and eosin

17-AAG:

17-N-allylamino-17-demethoxygeldanamycin

Ni-NTA:

nickel-nitrilotriacetic acid

References

  1. Levens D . You don’t muck with Myc. Genes Cancer 2010; 1: 547–554.

    Article  CAS  Google Scholar 

  2. Gregory MA, Hann SR . c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell Biol 2000; 20: 2423–2435.

    Article  CAS  Google Scholar 

  3. Salghetti SE, Young Kim S, Tansey WP . Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 1999; 18: 717–726.

    Article  CAS  Google Scholar 

  4. Herbst A, Salghetti SE, Kim SY, Tansey WP . Multiple cell-type-specific elements regulate Myc protein stability. Oncogene 2004; 23: 3863–3871.

    Article  CAS  Google Scholar 

  5. Clark HM, Yano T, Otsuki T, Jaffe ES, Shibata D, Raffeld M et al. Mutations in the coding region of c-MYC in AIDS-associated and other aggressive lymphomas. Cancer Res 1994; 54: 3383.

    CAS  PubMed  Google Scholar 

  6. Shindo H, Tani E, Matsumuto T, Hashimoto T, Furuyama J . Stabilization of c-myc protein in human glioma cells. Acta Neuropathol 1993; 86: 345–352.

    Article  CAS  Google Scholar 

  7. Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP . Skp2 regulates Myc protein stability and activity. Mol Cell 2003; 11: 1177–1188.

    Article  CAS  Google Scholar 

  8. von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C et al. The F-Box protein Skp2 participates in c-Myc Proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 2003; 11: 1189–1200.

    Article  CAS  Google Scholar 

  9. Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 2004; 101: 9085–9090.

    Article  CAS  Google Scholar 

  10. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 2004; 23: 2116–2125.

    Article  CAS  Google Scholar 

  11. Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, Beier R et al. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 2005; 123: 409–421.

    Article  CAS  Google Scholar 

  12. Popov N, Schülein C, Jaenicke LA, Eilers M . Ubiquitylation of the amino terminus of Myc by SCFβ-TrCP antagonizes SCFFbw7-mediated turnover. Nat Cell Biol 2010; 12: 973–981.

    Article  CAS  Google Scholar 

  13. Choi SH, Wright JB, Gerber SA, Cole MD . Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. Genes Dev 2010; 24: 1236–1241.

    Article  CAS  Google Scholar 

  14. Henriksson M, Classon M, Axelson H, Klein G, Thyberg J . Nuclear colocalization of c-myc protein and hsp70 in cells transfected with human wild-type and mutant c-myc genes. Exp Cell Res 1992; 203: 383–394.

    Article  CAS  Google Scholar 

  15. Carystinos GD, Kandouz M, Alaoui-Jamali MA, Batist G . Unexpected induction of the human connexin 43 promoter by the ras signaling pathway is mediated by a novel putative promoter sequence. Mol Pharmacol 2003; 63: 821–831.

    Article  CAS  Google Scholar 

  16. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 1999; 19: 4535–4545.

    Article  CAS  Google Scholar 

  17. Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM . The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 2001; 3: 100–105.

    Article  CAS  Google Scholar 

  18. Ding X, Goldberg MS . Regulation of LRRK2 stability by the E3 ubiquitin ligase CHIP. PLoS ONE 2009; 4: e5949.

    Article  Google Scholar 

  19. Ko HS, Bailey R, Smith WW, Liu Z, Shin JH, Lee YI et al. CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc Natl Acad Sci USA 2009; 106: 2897–2902.

    Article  CAS  Google Scholar 

  20. Li X, Huang M, Zheng H, Wang Y, Ren F, Shang Y et al. CHIP promotes Runx2 degradation and negatively regulates osteoblast differentiation. J Cell Biol 2008; 181: 959–972.

    Article  CAS  Google Scholar 

  21. McLean PJ, Klucken J, Shin Y, Hyman BT . Geldanamycin induces Hsp70 and prevents [alpha]-synuclein aggregation and toxicity in vitro. Biochem Biophys Res Commun 2004; 321: 665–669.

    Article  CAS  Google Scholar 

  22. Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 2001; 10: 1307–1315.

    Article  CAS  Google Scholar 

  23. Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Woodgett JR et al. Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene 1994; 9: 59–70.

    CAS  Google Scholar 

  24. Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I et al. Point mutations in the c-Myc transactivation domain are common in Burkitt’s lymphoma and mouse plasmacytomas. Nat Genet 1993; 5: 56–61.

    Article  CAS  Google Scholar 

  25. Patel JH, Loboda AP, Showe MK, Showe LC, McMahon SB . Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer 2004; 4: 562–568.

    Article  CAS  Google Scholar 

  26. The Cancer Genome Atlas Research Network Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.

    Article  Google Scholar 

  27. Lissanu Deribe Y, Wild P, Chandrashaker A, Curak J, Schmidt MH, Kalaidzidis Y et al. Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci Signal 2009; 2: ra84.

    Article  Google Scholar 

  28. Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L et al. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci USA 2002; 99: 12847–12852.

    Article  CAS  Google Scholar 

  29. Li F, Xie P, Fan Y, Zhang H, Zheng L, Gu D et al. C terminus of Hsc70-interacting protein promotes smooth muscle cell proliferation and survival through ubiquitin-mediated degradation of FoxO1. J Biol Chem 2009; 284: 20090–20098.

    Article  CAS  Google Scholar 

  30. Dickey CA, Koren J, Zhang YJ, Xu YF, Jinwal UK, Birnbaum MJ et al. Akt and CHIP coregulate tau degradation through coordinated interactions. Proc Natl Acad Sci USA 2008; 105: 3622–3627.

    Article  CAS  Google Scholar 

  31. Grobben B, De Deyn PP, Slegers H . Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res 2002; 310: 257–270.

    Article  CAS  Google Scholar 

  32. Whittle IR, Macarthur DC, Malcolm GP, Li M, Washington K, Ironside JW et al. Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumours. J Neurooncol 1998; 36: 231–242.

    Article  CAS  Google Scholar 

  33. Nagano N, Sasaki H, Aoyagi M, Hirakawa K . Invasion of experimental rat brain tumor: early morphological changes following microinjection of C6 glioma cells. Acta Neuropathol 1993; 86: 117–125.

    Article  CAS  Google Scholar 

  34. Nie L, Wu H, Sun X-H . Ubiquitination and degradation of Tal1/SCL are induced by notch signaling and depend on Skp2 and CHIP. J Biol Chem 2008; 283: 684–692.

    Article  CAS  Google Scholar 

  35. Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama KI et al. CHIP is associated with Parkin, a gene responsible for familial Parkinson’s disease, and enhances its ubiquitin ligase activity. Mol Cell 2002; 10: 55–67.

    Article  CAS  Google Scholar 

  36. Xia T, Dimitropoulou C, Zeng J, Antonova GN, Snead C, Venema RC et al. Chaperone-dependent E3 ligase CHIP ubiquitinates and mediates proteasomal degradation of soluble guanylyl cyclase. Am J Physiol Heart Circ Physiol 2007; 293: H3080–H3087.

    Article  CAS  Google Scholar 

  37. Belova L, Sharma S, Brickley DR, Nicolarsen JR, Patterson C, Conzen SD et al. Ubiquitin–proteasome degradation of serum-and glucocorticoid-regulated kinase-1 (SGK-1) is mediated by the chaperone-dependent E3 ligase CHIP. Biochem J 2006; 400: 235.

    Article  CAS  Google Scholar 

  38. Kundrat L, Regan L . Balance between folding and degradation for Hsp90-dependent client proteins: a key role for CHIP. Biochemistry 2010; 49: 7428–7438.

    Article  CAS  Google Scholar 

  39. Kajiro M, Hirota R, Nakajima Y, Kawanowa K, So-ma K, Ito I et al. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat Cell Biol 2009; 11: 312–319.

    Article  CAS  Google Scholar 

  40. Ghosh MK, Sharma P, Harbor PC, Rahaman SO, Haque SJ . PI3K-AKT pathway negatively controls EGFR-dependent DNA-binding activity of Stat3 in glioblastoma multiforme cells. Oncogene 2005; 24: 7290–7300.

    Article  CAS  Google Scholar 

  41. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex. Science 2005; 307: 1098–1101.

    Article  CAS  Google Scholar 

  42. Ghosh MK, Harter ML . A viral mechanism for remodeling chromatin structure in G0 cells. Mol Cell 2003; 12: 255–260.

    Article  CAS  Google Scholar 

  43. Sha J, Ghosh MK, Zhang K, Harter ML . E1A interacts with two opposing transcriptional pathways to induce quiescent cells into S phase. J Virol 2010; 84: 4050–4059.

    Article  CAS  Google Scholar 

  44. Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama K-I. U . Box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 2001; 276: 33111–33120.

    Article  CAS  Google Scholar 

  45. Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V et al. CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 2003; 22: 5446–5458.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants provided by Council of Scientific and Industrial Research, CSIR (EMPOWER) and DST to MKG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M K Ghosh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, I., Ahmed, S., Bhowmik, A. et al. The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene 32, 1284–1295 (2013). https://doi.org/10.1038/onc.2012.144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.144

Keywords

This article is cited by

Search

Quick links