Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fracture prevention in men

Abstract

The lifetime risk of experiencing a fracture in 50-year-old men is lower (20%) than the risk in women (50%). Consequently, much less research has been carried out on osteoporosis and fracture risk in men. Differences in the risk and incidence of fractures between men and women are related to differences in bone-related and fall-related factors between the sexes. During the past decade, progress has been achieved in case finding and fracture prevention in men. Epidemiology studies have better specified the prevalence and incidence of fractures, and insight into the pathophysiology of osteoporosis and fractures in men has progressed considerably. Case finding for men and women at the highest risk of fracture is now possible using the FRAX® algorithm, which includes clinical risk factors, with and without bone mineral density, and allows calculation of an individual's 10-year fracture risk. Although strategies to prevent fractures are much less common in men than in women, several treatment options are now available for this purpose. Bisphosphonates, in particular, consistently demonstrate a positive effect on bone mineral density, and some data also indicate decreased rates of vertebral fractures. For men with severe osteoporosis, treatment with the anabolic agent teriparatide might be an effective option.

Key Points

  • At the age of 50 years, the lifetime risk of fractures in men is lower (20%) than in women (50%)

  • The risk of a subsequent vertebral fracture is highest within the first years of an initial fracture

  • Differences in fracture risk and incidence between men and women are related to differences in bone-related and fall-related factors

  • Identifying women and men at highest risk of fracture is now feasible with the introduction of the FRAX® algorithm, which enables calculation of a 10-year fracture risk

  • Prevention of vertebral fractures in men at high risk has been demonstrated for treatment with bisphosphonates and teriparatide

  • An increased awareness regarding fracture risk, its complications, and the possibilities of preventing first and subsequent fractures in men is required

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathophysiology and consequences of fractures.
Figure 2: Average annual fracture incidence rate per 10,000 population, by age group and sex, of a study group based in Leicestershire, UK.
Figure 3: Summary of growth-related and age-related changes in axial and appendicular skeletal mass, size and density.42

Similar content being viewed by others

References

  1. Geusens, P. & Dinant, G. Integrating a gender dimension into osteoporosis and fracture risk research. Gend. Med. 4 (Suppl. B) S147–S161 (2007).

    Article  PubMed  Google Scholar 

  2. Khosla, S., Amin, S. & Orwoll, E. Osteoporosis in men. Endocr. Rev. 29, 441–464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kanis, J. A. et al. FRAX and its applications to clinical practice. Bone 44, 734–743 (2009).

    Article  PubMed  Google Scholar 

  4. Sambrook, P. & Cooper, C. Osteoporosis. Lancet 367, 2010–2018 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Lems, W. F. Clinical relevance of vertebral fractures. Ann. Rheum. Dis. 66, 2–4 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Donaldson, L. J., Cook, A. & Thomson, R. G. Incidence of fractures in a geographically defined population. J. Epidemiol. Community Health 44, 241–245 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cummings, S. R. et al. BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J. Bone Miner. Res. 21, 1550–1556 (2006).

    Article  PubMed  Google Scholar 

  8. Center, J. R., Bliuc, D., Nguyen, T. V. & Eisman, J. A. Risk of subsequent fracture after low-trauma fracture in men and women. JAMA 297, 387–394 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. van Geel, T. A., van Helden, S., Geusens, P. P., Winkens, B. & Dinant, G. J. Clinical subsequent fractures cluster in time after first fractures. Ann. Rheum. Dis. 68, 99–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Bliuc, D. et al. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301, 513–521 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Maggi, S., Kelsey, J. L., Litvak, J. & Heyse, S. P. Incidence of hip fractures in the elderly: a cross-national analysis. Osteoporos. Int. 1, 232–241 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Jaglal, S. B. et al. Population trends in BMD testing, treatment, and hip and wrist fracture rates: are the hip fracture projections wrong? J. Bone Miner. Res. 20, 898–905 (2005).

    Article  PubMed  Google Scholar 

  13. Pande, I. et al. Quality of life, morbidity, and mortality after low trauma hip fracture in men. Ann. Rheum. Dis. 65, 87–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Poór, G., Atkinson, E. J., O'Fallon, W. M. & Melton 3rd, L. J. Determinants of reduced survival following hip fractures in men. Clin. Orthop. Relat. Res. 319, 260–265 (1995).

    Google Scholar 

  15. Schürch, M. A. et al. A prospective study on socioeconomic aspects of fracture of the proximal femur. J. Bone Miner. Res. 11, 1935–1942 (1996).

    Article  PubMed  Google Scholar 

  16. Berry, S. D. et al. Second hip fracture in older men and women: the Framingham Study. Arch. Intern. Med. 167, 1971–1976 (2007).

    Article  PubMed  Google Scholar 

  17. O'Neill, T. W. et al. The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J. Bone Miner. Res. 11, 1010–1018 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Jackson, S. A., Tenenhouse, A. & Robertson, L. Vertebral fracture definition from population-based data: preliminary results from the Canadian Multicenter Osteoporosis Study (CaMos). Osteoporos. Int. 11, 680–687 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Szulc, P., Munoz, F., Marchand, F. & Delmas, P. D. Semiquantitative evaluation of prevalent vertebral deformities in men and their relationship with osteoporosis: the MINOS study. Osteoporos. Int. 12, 302–310 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Gallacher, S. J., Gallagher, A. P., McQuillian, C., Mitchell, P. J. & Dixon, T. The prevalence of vertebral fracture amongst patients presenting with non-vertebral fractures. Osteoporos. Int. 18, 185–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Felsenberg, D. et al. Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS). J. Bone Miner. Res. 17, 716–724 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Scane, A. C. et al. Case–control study of the pathogenesis and sequelae of symptomatic vertebral fractures in men. Osteoporos. Int. 9, 91–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Burger, H. et al. Vertebral deformities and functional impairment in men and women. J. Bone Miner. Res. 12, 152–157 (1997).

    Article  CAS  Google Scholar 

  24. Matthis, C., Weber, U., O'Neill, T. W. & Raspe, H. Health impact associated with vertebral deformities: results from the European Vertebral Osteoporosis Study (EVOS). Osteoporos. Int. 8, 364–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Hasserius, R., Karlsson, M. K., Nilsson, B. E., Redlund-Johnell, I. & Johnell, O. Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporos. Int. 14, 61–68 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Johnell, O., Oden, A., Caulin, F. & Kanis, J. A. Acute and long-term increase in fracture risk after hospitalization for vertebral fracture. Osteoporos. Int. 12, 207–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Reeve, J. et al. Determinants of the size of incident vertebral deformities in European men and women in the sixth to ninth decades of age: the European Prospective Osteoporosis Study (EPOS). J. Bone Miner. Res. 18, 1664–1673 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. van Helden, S. et al. Bone and fall-related fracture risks in women and men with a recent clinical fracture. J. Bone Joint Surg. Am. 90, 241–248 (2008).

    Article  PubMed  Google Scholar 

  29. Sharma, S., Fraser, M., Lovell, F., Reece, A. & McLellan, A. R. Characteristics of males over 50 years who present with a fracture: epidemiology and underlying risk factors. J. Bone Joint Surg. Br. 90, 72–77 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Naganathan, V. et al. Gender differences in the genetic factors responsible for variation in bone density and ultrasound. J. Bone Miner. Res. 17, 725–733 (2002).

    Article  PubMed  Google Scholar 

  31. Jones, G., Nguyen, T., Sambrook, P. N., Kelly, P. J. & Eisman, J. A. Progressive femoral neck bone loss in the elderly: longitudinal findings from the Dubbo osteoporosis epidemiology study. BMJ 309, 691–695 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fink, H. A. et al. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J. Clin. Endocrinol. Metab. 91, 3908–3915 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Smith, E. P. et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056–1061 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Morishima, A., Grumbach, M. M., Simpson, E. R., Fisher, C. & Qin, K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J. Clin. Endocrinol. Metab. 80, 3689–3698 (1995).

    CAS  PubMed  Google Scholar 

  35. Barrett-Connor, E. et al. Low levels of estradiol are associated with vertebral fractures in older men, but not women: the Rancho Bernardo Study. J. Clin. Endocrinol. Metab. 85, 219–223 (2000).

    CAS  PubMed  Google Scholar 

  36. Amin, S. et al. Estradiol, testosterone, and the risk for hip fractures in elderly men from the Framingham Study. Am. J. Med. 119, 426–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Mellström, D. et al. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J. Bone Miner. Res. 23, 1552–1560 (2008).

    Article  PubMed  Google Scholar 

  38. Khosla, S. et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J. Bone Miner. Res. 21, 124–131 (2006).

    Article  PubMed  Google Scholar 

  39. Francis, R. M., Peacock, M., Marshall, D. H., Horsman, A. & Aaron, J. E. Spinal osteoporosis in men. Bone Miner. 5, 347–357 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Riggs, B. L. et al. A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J. Bone Miner. Res. 23, 205–214 (2008).

    Article  PubMed  Google Scholar 

  41. Ebeling, P. R. Clinical practice. Osteoporosis in men. N. Engl. J. Med. 358, 1474–1482 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Seeman, E. Clincal review 137: sexual dimorphism in skeletal size, density and strength. J. Clin. Endocrinol. Metab. 86, 4576–4584 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, J. S. et al. Effect of age-related chronic immobility on markers of bone turnover. J. Bone Miner. Res. 21, 324–331 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Schuit, S. C. et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34, 195–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Melton 3rd, L. J., Orwoll, E. S. & Wasnich, R. D. Does bone density predict fractures comparably in men and women? Osteoporos. Int. 12, 707–709 (2001).

    Article  PubMed  Google Scholar 

  46. de Laet, C. E., van der Klift, M., Hofman, A. & Pols, H. A. Osteoporosis in men and women: a story about bone mineral density thresholds and hip fracture risk. J. Bone Miner. Res. 17, 2231–2236 (2002).

    Article  PubMed  Google Scholar 

  47. Kanis, J. A., Johnell, O., Oden, A., de Laet, C. & Mellstrom, D. Diagnosis of osteoporosis and fracture threshold in men. Calcif. Tissue Int. 69, 218–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Meier, C., Nguyen, T. V., Center, J. R., Seibel, M. J. & Eisman, J. A. Bone resorption and osteoporotic fractures in elderly men: the Dubbo osteoporosis epidemiology study. J. Bone Miner. Res. 20, 579–587 (2005).

    Article  PubMed  Google Scholar 

  49. Abbasi, A. A. et al. Observations on nursing home residents with a history of hip fracture. Am. J. Med. Sci. 310, 229–234 (1995).

    CAS  PubMed  Google Scholar 

  50. Sattin, R. W. et al. The incidence of fall injury events among the elderly in a defined population. Am. J. Epidemiol. 131, 1028–1037 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Jonsson, B. Y., Siggeirsdottir, K., Mogensen, B., Sigvaldason, H. & Sigursson, G. Fracture rate in a population-based sample of men in Reykjavik. Acta Orthop. Scand. 75, 195–200 (2004).

    Article  PubMed  Google Scholar 

  52. Mackey, D. C. et al. High-trauma fractures and low bone mineral density in older women and men. JAMA 298, 2381–2388 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Ensrud, K. E. et al. A comparison of frailty indexes for the prediction of falls, disability, fractures, and mortality in older men. J. Am. Geriatr. Soc. 57, 492–498 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu, H. et al. Screening for osteoporosis in men: a systematic review for an American College of Physicians Guideline. Ann. Intern. Med. 148, 685–701 (2008).

    Article  PubMed  Google Scholar 

  55. University of Sheffield. FRAX®WHO Fracture Risk Assessment Tool [online]

  56. Compston, J. et al. Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. Maturitas 62, 105–108 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Michaëlsson, K. et al. Leisure physical activity and the risk of fracture in men. PLoS Med. 4, e199 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tang, B. M., Eslick, G. D., Nowson, C., Smith, C. & Bensoussan, A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet 370, 657–666 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. European Medicines Agency [online].

  60. Orwoll, E. et al. Alendronate for the treatment of osteoporosis in men. N. Engl. J. Med. 343, 604–610 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Sawka, A. M. et al. Does alendronate reduce the risk of fracture in men? A meta-analysis incorporating prior knowledge of anti-fracture efficacy in women. BMC Musculoskelet. Disord. 6, 39 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fahrleitner-Pammer, A. et al. Ibandronate prevents bone loss and reduces vertebral fracture risk in male cardiac transplant patients: a randomized double-blind, placebo-controlled trial. J. Bone Miner. Res. 24, 1335–1344 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Boonen, S. et al. Once-weekly risedronate in men with osteoporosis: results of a 2-year, placebo-controlled, double-blind, multicenter study. J. Bone Miner. Res. 24, 719–725 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Reid, D. M., Adami, S., Devogelaer, J. P. & Chines, A. A. et al. Risedronate increases bone density and reduces vertebral fracture risk within one year in men on corticosteroid therapy. Calcif. Tissue Int. 69, 242–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Sato, Y. Iwamoto, J., Kanoko, T. & Satoh, K. Risedronate sodium therapy for prevention of hip fracture in men 65 years or older after stroke. Arch. Intern. Med. 165, 1743–1748 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Sato, Y., Honda, Y. & Iwamoto, J. Risedronate and ergocalciferol prevent hip fracture in elderly men with Parkinson disease. Neurology 68, 911–915 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Lyles, K. W. et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N. Engl. J. Med. 357, 1799–1809 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Kaufman, J. M. et al. Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos. Int. 16, 510–516 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Leder, B. Z., Smith, M. R., Fallon, M. A., Lee, M. L. & Finkelstein, J. S. Effects of gonadal steroid suppression on skeletal sensitivity to parathyroid hormone in men. J. Clin. Endocrinol. Metab. 86, 511–516 (2001).

    CAS  PubMed  Google Scholar 

  70. Snyder, P. J. et al. Effect of testosterone treatment on bone mineral density in men over 65 years of age. J. Clin. Endocrinol. Metab. 84, 1966–1972 (1999).

    CAS  PubMed  Google Scholar 

  71. Benito, M. et al. Effect of testosterone replacement on trabecular architecture in hypogonadal men. J. Bone Miner. Res. 20, 1785–1791 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Emmelot-Vonk, M. H. et al. Effect of testosterone supplementation on functional mobility, cognition, and other parameters in older men: a randomized controlled trial. JAMA 299, 39–52 (2008).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piet Geusens.

Ethics declarations

Competing interests

W. Lems has received speakers' honoraria from Eli Lilly, Merck Sharp & Dohme, Procter and Gamble, Roche, and Servier. P. Geusens and P. Sambrook declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geusens, P., Sambrook, P. & Lems, W. Fracture prevention in men. Nat Rev Rheumatol 5, 497–504 (2009). https://doi.org/10.1038/nrrheum.2009.148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing