Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth

A Corrigendum to this article was published on 11 March 2014

This article has been updated

Key Points

  • Endoreplication occurs in multiple cell types in most animals and plants, typically in terminally differentiated cells. The final level of ploidy is highly cell type- and species-specific.

  • Due to their increased genomic DNA content, endocycling cells can achieve large sizes or massive output of secreted protein products.

  • Endocycle onset requires suppression of mitosis. This is achieved by different mechanisms in different species and cell types. These include transcriptional repression of mitotic cyclin expression, APC/C (anaphase promoting complex, also known as the cyclosome) -mediated degradation of mitotic cyclins and inhibition of cyclin-dependent kinase (CDK) activity. This inhibition often relies on CDK inhibitory proteins.

  • Endoreplication onset and progression are also broadly affected by the activities of the E2F transcription factors and their co-repressors, the RB proteins, which affect the expression of genes involved in mitosis and DNA replication.

  • Endocycle progression involves many of the same factors that control G1–S phase transitions and G1 length in mitotically proliferating cells. Key requirements are the suppression of mitotic CDK (M-CDK) activity, and the retention of oscillating S phase CDK (S-CDK) activity.

  • Various upstream inputs control the speed of endocycling and the timing of endocycle exit. Together these two factors determine final ploidy and also affect cell size. Upstream inputs include nutrients and growth factors, target of rapamycin (TOR) signalling and (in plants) light exposure.

  • Cross-species and cross-kingdom comparisons suggest that endocycles are an ancient cellular innovation that probably evolved many times.

Abstract

In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1–S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocycle variants.
Figure 2: The CDK threshold model.
Figure 3: Transitioning from mitotic cycles to endocycles.
Figure 4: Models for endocycle progression.

Similar content being viewed by others

Change history

  • 11 March 2014

    In the above article, reference 168 (page 210) was incorrectly cited. The citation appeared as: Tamori, Y. & Deng, W. M. Cell competition and its implications for development and cancer. J. Genet. Genom. 38, 483–495 (2011). The correct citation is: Tamori, Y. & Deng, W. M. Tissue repair through cell competition and compensatory cellular hypertrophy in postmitotic epithelia. Dev. Cell 25, 350–363 (2013). This has now been corrected in the online version of the article.

References

  1. Fox, D. T. & Duronio, R. J. Endoreplication and polyploidy: insights into development and disease. Development 140, 3–12 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zielke, N., Edgar, B. A. & DePamphilis, M. L. Endoreplication. Cold Spring Harb. Perspect. Biol 5, a012948 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Edgar, B. A. & Orr-Weaver, T. L. Endoreplication cell cycles: more for less. Cell 105, 297–306 (2001).

    CAS  PubMed  Google Scholar 

  4. De Veylder, L., Larkin, J. C. & Schnittger, A. Molecular control and function of endoreplication in development and physiology. Trends Plant Sci. 16, 624–634 (2011).

    CAS  PubMed  Google Scholar 

  5. MacAuley, A., Cross, J. C. & Werb, Z. Reprogramming the cell cycle for endoreduplication in rodent trophoblast cells. Mol. Biol. Cell 9, 795–807 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ganot, P. & Thompson, E. M. Patterning through differential endoreduplication in epithelial organogenesis of the chordate, Oikopleura dioica. Dev. Biol. 252, 59–71 (2002).

    CAS  PubMed  Google Scholar 

  7. Anisimov, A. P. Endopolyploidy as a morphogenetic factor of development. Cell Biol. Int. 29, 993–1004 (2005).

    PubMed  Google Scholar 

  8. Mandrioli, M., Mola, L., Cuoghi, B. & Sonetti, D. Endoreplication: a molecular trick during animal neuron evolution. Q. Rev. Biol. 85, 159–169 (2010).

    PubMed  Google Scholar 

  9. Lasek, R. J. & Dower, W. J. Aplysia californica: analysis of nuclear DNA in individual nuclei of giant neurons. Science 172, 278–280 (1971).

    CAS  PubMed  Google Scholar 

  10. White, M. J. D. Animal Cytology and Evolution (Cambridge Univ. Press, 1973).

    Google Scholar 

  11. Smith, A. V. & Orr-Weaver, T. L. The regulation of the cell cycle during Drosophila embryogenesis: the transition to polyteny. Development 112, 997–1008 (1991). Using BrdU pulse labelling, this ground-breaking study demonstrates that the polyteny of larval tissues arises from a modified cell cycle, which consists only of S and G phases, and is termed 'endo cell cycle'.

    CAS  PubMed  Google Scholar 

  12. Audibert, A., Simon, F. & Gho, M. Cell cycle diversity involves differential regulation of Cyclin E activity in the Drosophila bristle cell lineage. Development 132, 2287–2297 (2005).

    CAS  PubMed  Google Scholar 

  13. Unhavaithaya, Y. & Orr-Weaver, T. L. Polyploidization of glia in neural development links tissue growth to blood–brain barrier integrity. Genes Dev. 26, 31–36 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hammond, M. P. & Laird, C. D. Chromosome structure and DNA replication in nurse and follicle cells of Drosophila melanogaster. Chromosoma 91, 267–278 (1985).

    CAS  PubMed  Google Scholar 

  15. Hammond, M. P. & Laird, C. D. Control of DNA replication and spatial distribution of defined DNA sequences in salivary gland cells of Drosophila melanogaster. Chromosoma 91, 279–286 (1985).

    CAS  PubMed  Google Scholar 

  16. Nordman, J., Li, S., Eng, T., Macalpine, D. & Orr-Weaver, T. L. Developmental control of the DNA replication and transcription programs. Genome Res. 21, 175–181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gupta, S. Hepatic polyploidy and liver growth control. Seminars Cancer Biol. 10, 161–171 (2000).

    CAS  Google Scholar 

  18. Mollova, M. et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl Acad. Sci. USA 110, 1446–1451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Soonpaa, M. H., Kim, K. K., Pajak, L., Franklin, M. & Field, L. J. Cardiomyocyte DNA synthesis and binucleation during murine development. Am. J. Physiol. 271, H2183–H2189 (1996).

    CAS  PubMed  Google Scholar 

  20. Gandarillas, A. The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint. Cell Cycle 11, 4507–4516 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. McCrann, D. J., Nguyen, H. G., Jones, M. R. & Ravid, K. Vascular smooth muscle cell polyploidy: an adaptive or maladaptive response? J. Cell. Physiol. 215, 588–592 (2008).

    CAS  PubMed  Google Scholar 

  22. Kriz, W., Hahnel, B., Rosener, S. & Elger, M. Long-term treatment of rats with FGF-2 results in focal segmental glomerulosclerosis. Kidney Int. 48, 1435–1450 (1995).

    CAS  PubMed  Google Scholar 

  23. Varmuza, S., Prideaux, V., Kothary, R. & Rossant, J. Polytene chromosomes in mouse trophoblast giant cells. Development 102, 127–134 (1988).

    CAS  PubMed  Google Scholar 

  24. Barlow, P. W. & Sherman, M. I. Cytological studies on the organization of DNA in giant trophoblast nuclei of the mouse and the rat. Chromosoma 47, 119–131 (1974).

    CAS  PubMed  Google Scholar 

  25. Cross, J. C. How to make a placenta: mechanisms of trophoblast cell differentiation in mice — a review. Placenta 26, S3–S9 (2005).

    PubMed  Google Scholar 

  26. Rossant, J. & Cross, J. C. Placental development: lessons from mouse mutants. Nature Rev. Genet. 2, 538–548 (2001).

    CAS  PubMed  Google Scholar 

  27. Hu, D. & Cross, J. C. Development and function of trophoblast giant cells in the rodent placenta. Int. J. Dev. Biol. 54, 341–354 (2010).

    CAS  PubMed  Google Scholar 

  28. Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998). Describes the isolation of a stable trophoblast stem cell line that can be induced to execute endocycles, and thus is likely to represent the currently best available mammalian system for mechanistic studies on endoreplication.

    CAS  PubMed  Google Scholar 

  29. Oda, M., Shiota, K. & Tanaka, S. Trophoblast cell lineage in cloned mouse embryos. Dev. Growth Differ. 52, 285–291 (2010).

    CAS  PubMed  Google Scholar 

  30. Lopez-Schier, H. & St Johnston, D. Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes Dev. 15, 1393–1405 (2001).

    CAS  PubMed  Google Scholar 

  31. Schaeffer, V., Althauser, C., Shcherbata, H. R., Deng, W. M. & Ruohola-Baker, H. Notch-dependent Fizzy-related/Hec1/Cdh1 expression is required for the mitotic-to-endocycle transition in Drosophila follicle cells. Curr. Biol. 14, 630–636 (2004).

    CAS  PubMed  Google Scholar 

  32. Ravid, K., Lu, J., Zimmet, J. M. & Jones, M. R. Roads to polyploidy: the megakaryocyte example. J. Cell. Physiol. 190, 7–20 (2002).

    CAS  PubMed  Google Scholar 

  33. Harashima, H. & Schnittger, A. The integration of cell division, growth and differentiation. Curr. Opin. Plant Biol. 13, 66–74 (2010).

    CAS  PubMed  Google Scholar 

  34. Sabelli, P. A. & Larkins, B. A. The contribution of cell cycle regulation to endosperm development. Sex. Plant Reprod. 22, 207–219 (2009).

    PubMed  Google Scholar 

  35. Caro, E., Desvoyes, B., Ramirez-Parra, E., Sanchez, M. P. & Gutierrez, C. Endoreduplication control during plant development. SEB Exp. Biol. Ser. 59, 167–187 (2008).

    CAS  PubMed  Google Scholar 

  36. Gutierrez, C. The Arabidopsis cell division cycle. Arabidopsis Book 7, e0120 (2009).

    PubMed  PubMed Central  Google Scholar 

  37. Breuer, C., Ishida, T. & Sugimoto, K. Developmental control of endocycles and cell growth in plants. Curr. Opin. Plant Biol. 13, 654–660 (2010).

    CAS  PubMed  Google Scholar 

  38. Gutierrez, C. Coupling cell proliferation and development in plants. Nature Cell Biol. 7, 535–541 (2005).

    CAS  PubMed  Google Scholar 

  39. Husband, B. C., Baldwin, S. J. & Suda, J. in Plant Genome Diversity (ed. Greilhuber, J., Dolezel, J. J. F.) 255–276 (Springer, 2013).

    Google Scholar 

  40. Melaragno, J. E., Mehrotra, B. & Coleman, A. W. Relationship between endopolyploidy andcell size in epidermal tissue of Arabidopsis. Plant Cell 5, 1661–1668 (1993).

    PubMed  PubMed Central  Google Scholar 

  41. Sugimoto-Shirasu, K. & Roberts, K. “Big it up”: endoreduplication and cell-size control in plants. Curr. Opin. Plant Biol. 6, 544–553 (2003).

    CAS  PubMed  Google Scholar 

  42. Kondorosi, E., Roudier, F. & Gendreau, E. Plant cell-size control: growing by ploidy? Curr. Opin. Plant Biol. 3, 488–492 (2000).

    CAS  PubMed  Google Scholar 

  43. Hulskamp, M., Misra, S. & Jurgens, G. Genetic dissection of trichome cell development in Arabidopsis. Cell 76, 555–566 (1994).

    CAS  PubMed  Google Scholar 

  44. Breuer, C. et al. Transcriptional repression of the APC/C activator CCS52A1 promotes active termination of cell growth. EMBO J. 31, 4488–4501 (2012). Identifies the trihelical transcription factor GTL1 as a terminator of the endocycle programme. Demonstrates that GTL1 acts as a transcriptional repressor of the CCS52 gene family in endoreplicating cells, thereby controlling endocycle progression and post-mitotic growth in A. thaliana.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Baroux, C., Fransz, P. & Grossniklaus, U. Nuclear fusions contribute to polyploidization of the gigantic nuclei in the chalazal endosperm of Arabidopsis. Planta 220, 38–46 (2004).

    CAS  PubMed  Google Scholar 

  46. Chevalier, C. et al. Elucidating the functional role of endoreduplication in tomato fruit development. Ann. Bot. 107, 1159–1169 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hayles, J., Fisher, D., Woollard, A. & Nurse, P. Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2-mitotic B cyclin complex. Cell 78, 813–822 (1994).

    CAS  PubMed  Google Scholar 

  48. Hayashi, S. A. Cdc2 dependent checkpoint maintains diploidy in Drosophila. Development 122, 1051–1058 (1996).

    CAS  PubMed  Google Scholar 

  49. Weigmann, K., Cohen, S. M. & Lehner, C. F. Cell cycle progression, growth and patterning in imaginal discs despite inhibition of cell division after inactivation of Drosophila Cdc2 kinase. Development 124, 3555–3563 (1997).

    CAS  PubMed  Google Scholar 

  50. Coudreuse, D. & Nurse, P. Driving the cell cycle with a minimal CDK control network. Nature 468, 1074–1079 (2010).

    CAS  PubMed  Google Scholar 

  51. Schnittger, A., Schobinger, U., Stierhof, Y. D. & Hulskamp, M. Ectopic B-type cyclin expression induces mitotic cycles in endoreduplicating Arabidopsis trichomes. Curr. Biol. 12, 415–420 (2002).

    CAS  PubMed  Google Scholar 

  52. Dewitte, W. et al. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc. Natl Acad. Sci. USA 104, 14537–14542 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Santamaria, D. et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448, 811–815 (2007).

    CAS  PubMed  Google Scholar 

  54. Stern, B. & Nurse, P. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet. 12, 345–350 (1996).

    CAS  PubMed  Google Scholar 

  55. Follette, P. J., Duronio, R. J. & O'Farrell, P. H. Fluctuations in cyclin E levels are required for multiple rounds of endocycle S phase in Drosophila. Curr. Biol. 8, 235–238 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Weiss, A., Herzig, A., Jacobs, H. & Lehner, C. F. Continuous Cyclin E expression inhibits progression through endoreduplication cycles in Drosophila. Curr. Biol. 8, 239–242 (1998). References 55 and 56 reveal that the levels of cycE protein have to oscillate to allow endocycle progression, and thus provide a first hint that G1–S phase regulation differs between mitotic and endocycling cells.

    CAS  PubMed  Google Scholar 

  57. Remus, D. & Diffley, J. F. Eukaryotic DNA replication control: lock and load, then fire. Curr. Opin. Cell Biol. 21, 771–777 (2009).

    CAS  PubMed  Google Scholar 

  58. Deng, W. M., Althauser, C. & Ruohola-Baker, H. Notch–Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells. Development 128, 4737–4746 (2001). References 30 and 58 provide a new landmark in the field of endoreplication by demonstrating that endocycle entry in the D. melanogaster ovary is regulated by the Notch signalling pathway.

    CAS  PubMed  Google Scholar 

  59. Sun, J. & Deng, W. M. Hindsight mediates the role of notch in suppressing hedgehog signaling and cell proliferation. Dev. Cell 12, 431–442 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Shcherbata, H. R., Althauser, C., Findley, S. D. & Ruohola-Baker, H. The mitotic-to-endocycle switch in Drosophila follicle cells is executed by Notch-dependent regulation of G1/S, G2/M and M/G1 cell-cycle transitions. Development 131, 3169–3181 (2004).

    CAS  PubMed  Google Scholar 

  61. Baumer, D., Strohlein, N. M. & Schoppmeier, M. Opposing effects of Notch-signaling in maintaining the proliferative state of follicle cells in the telotrophic ovary of the beetle Tribolium. Front. Zool. 9, 15 (2012).

    PubMed  PubMed Central  Google Scholar 

  62. Zielke, N., Querings, S., Rottig, C., Lehner, C. & Sprenger, F. The anaphase-promoting complex/cyclosome (APC/C) is required for rereplication control in endoreplication cycles. Genes Dev. 22, 1690–1703 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Maqbool, S. B. et al. Dampened activity of E2F1–DP and Myb–MuvB transcription factors in Drosophila endocycling cells. J. Cell Sci. 123, 4095–4106 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hochegger, H. et al. An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. J. Cell Biol. 178, 257–268 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ullah, Z., Kohn, M. J., Yagi, R., Vassilev, L. T. & DePamphilis, M. L. Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity. Genes Dev. 22, 3024–3036 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ullah, Z., de Renty, C. & DePamphilis, M. L. Checkpoint kinase 1 prevents cell cycle exit linked to terminal cell differentiation. Mol. Cell. Biol. 31, 4129–4143 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Takahashi, K. Kobayashi, T. & Kanayama, N. p57Kip2 regulates the proper development of labyrinthine and spongiotrophoblasts. Mol. Hum. Reprod. 6, 1019–1025 (2000).

    CAS  PubMed  Google Scholar 

  68. Zhang, P., Wong, C., DePinho, R. A., Harper, J. W. & Elledge, S. J. Cooperation between the Cdk inhibitors p27KIP1 and p57KIP2 in the control of tissue growth and development. Genes Dev. 12, 3162–3167 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kanayama, N. et al. Deficiency in p57Kip2 expression induces preeclampsia-like symptoms in mice. Mol. Hum. Reprod. 8, 1129–1135 (2002).

    CAS  PubMed  Google Scholar 

  70. Chen, H. Z., Tsai, S. Y. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nature reviews. Cancer 9, 785–797 (2009).

    CAS  PubMed  Google Scholar 

  71. van den Heuvel, S. & Dyson, N. J. Conserved functions of the pRB and E2F families. Nature Rev. Mol. Cell Biol. 9, 713–724 (2008).

    CAS  Google Scholar 

  72. Kohn, M. J., Bronson, R. T., Harlow, E., Dyson, N. J. & Yamasaki, L. Dp1 is required for extra-embryonic development. Development 130, 1295–1305 (2003).

    CAS  PubMed  Google Scholar 

  73. LeCouter, J. E., Kablar, B., Whyte, P. F., Ying, C. & Rudnicki, M. A. Strain-dependent embryonic lethality in mice lacking the retinoblastoma-related p130 gene. Development 125, 4669–4679 (1998).

    CAS  PubMed  Google Scholar 

  74. Lee, M. H. et al. Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev. 10, 1621–1632 (1996).

    CAS  PubMed  Google Scholar 

  75. Cobrinik, D. et al. Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev. 10, 1633–1644 (1996).

    CAS  PubMed  Google Scholar 

  76. Wenzel, P. L. et al. Rb is critical in a mammalian tissue stem cell population. Genes Dev. 21, 85–97 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chong, J. L. et al. E2f3a and E2f3b contribute to the control of cell proliferation and mouse development. Mol. Cell. Biol. 29, 414–424 (2009).

    CAS  PubMed  Google Scholar 

  78. Ouseph, M. M. et al. Atypical E2F repressors and activators coordinate placental development. Dev. Cell 22, 849–862 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen, H. Z. et al. Canonical and atypical E2Fs regulate the mammalian endocycle. Nature Cell Biol. 14, 1192–1202 (2012).

    CAS  PubMed  Google Scholar 

  80. Pandit, S. K. et al. E2F8 is essential for polyploidization in mammalian cells. Nature Cell Biol. 14, 1181–1191 (2012).

    CAS  PubMed  Google Scholar 

  81. Zielke, N. et al. Control of Drosophila endocycles by E2F and CRL4CDT2. Nature 480, 123–127 (2011). The most comprehensive study of the molecular mechanism of the endocycle to date. Demonstrates that the endocycle oscillations in D. melanogaster salivary glands rely on a negative feedback loop that comprises E2F and CRL4Cdt2. Also provides a comprehensive mathematical model of the endocycle.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Weng, L., Zhu, C., Xu, J. & Du, W. Critical role of active repression by E2F and Rb proteins in endoreplication during Drosophila development. EMBO J. 22, 3865–3875 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nowack, M. K. et al. Genetic framework of cyclin-dependent kinase function in Arabidopsis. Dev. Cell 22, 1030–1040 (2012).

    CAS  PubMed  Google Scholar 

  84. Boudolf, V. et al. The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa–DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell 16, 2683–2692 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Imai, K. K. et al. The A-type cyclin CYCA2;3 is a key regulator of ploidy levels in Arabidopsis endoreduplication. Plant Cell 18, 382–396 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Qi, R. & John, P. C. Expression of genomic AtCYCD2;1 in Arabidopsis induces cell division at smaller cell sizes: implications for the control of plant growth. Plant Physiol. 144, 1587–1597 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yu, Y., Steinmetz, A., Meyer, D., Brown, S. & Shen, W. H. The tobacco A-type cyclin, Nicta;CYCA3;2, at the nexus of cell division and differentiation. Plant Cell 15, 2763–2777 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Boudolf, V. et al. CDKB1;1 forms a functional complex with CYCA2;3 to suppress endocycle onset. Plant Physiol. 150, 1482–1493 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Xie, Z. et al. Regulation of cell proliferation in the stomatal lineage by the Arabidopsis MYB FOUR LIPS via direct targeting of core cell cycle genes. Plant Cell 22, 2306–2321 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cebolla, A. et al. The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. EMBO J. 18, 4476–4484 (1999). Describes the CCS52 gene from Medicago truncatula (clover), which encodes an activator of the APC/C and promotes the switch from mitotic proliferation to endoreplication by mediating mitotic cyclin degradation.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vanstraelen, M. et al. APC/C–CCS52A complexes control meristem maintenance in the Arabidopsis root. Proc. Natl Acad. Sci. USA 106, 11806–11811 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tarayre, S., Vinardell, J. M., Cebolla, A., Kondorosi, A. & Kondorosi, E. Two classes of the CDh1-type activators of the anaphase-promoting complex in plants: novel functional domains and distinct regulation. Plant Cell 16, 422–434 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Larson-Rabin, Z., Li, Z., Masson, P. H. & Day, C. D. FZR2/CCS52A1 expression is a determinant of endoreduplication and cell expansion in Arabidopsis. Plant Physiol. 149, 874–884 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kasili, R. et al. SIAMESE cooperates with the CDH1-like protein CCS52A1 to establish endoreplication in Arabidopsis thaliana trichomes. Genetics 185, 257–268 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Takahashi, N. et al. Cytokinins control endocycle onset by promoting the expression of an APC/C activator in Arabidopsis roots. Curr. Biol. 23, 1812–1817 (2013).

    CAS  PubMed  Google Scholar 

  96. Roodbarkelari, F. et al. Cullin 4-ring finger-ligase plays a key role in the control of endoreplication cycles in Arabidopsis trichomes. Proc. Natl Acad. Sci. USA 107, 15275–15280 (2010). Proposes a two-step model of endoreplication control in A. thaliana trichomes, in which endoreplication onset relies on CDK inhibition by one type of CKI, whereas endocycle progression requires a CRL4-dependent oscillation of another type of CKI.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rossignol, P. et al. AtE2F-a and AtDP-a, members of the E2F family of transcription factors, induce Arabidopsis leaf cells to re-enter S phase. Mol. Genet. Genom. 266, 995–1003 (2002).

    CAS  Google Scholar 

  98. Vlieghe, K. et al. The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana. Curr. Biol. 15, 59–63 (2005). This elegant study uses flow cytometry to reveal that the atypical E2F protein E2FE (DEL1) controls endoreplication onset in A. thaliana leaves. Loss of E2FE (DEL1) function leads to increased ploidy levels, whereas ectopic expression of E2FE (DEL1) impairs endoreplication.

    CAS  PubMed  Google Scholar 

  99. De Veylder, L. et al. Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa–DPa transcription factor. EMBO J. 21, 1360–1368 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Magyar, Z. et al. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. Plant Cell 17, 2527–2541 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. del Pozo, J. C., Boniotti, M. B. & Gutierrez, C. Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCF(AtSKP2) pathway in response to light. Plant Cell 14, 3057–3071 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. del Pozo, J. C., Diaz-Trivino, S., Cisneros, N. & Gutierrez, C. The balance between cell division and endoreplication depends on E2FC–DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. Plant Cell 18, 2224–2235 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lammens, T. et al. Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc. Natl Acad. Sci. USA 105, 14721–14726 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Park, J. A. et al. Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants. Plant J. 42, 153–163 (2005).

    CAS  PubMed  Google Scholar 

  105. Desvoyes, B., Ramirez-Parra, E., Xie, Q., Chua, N. H. & Gutierrez, C. Cell type-specific role of the retinoblastoma/E2F pathway during Arabidopsis leaf development. Plant Physiol. 140, 67–80 (2006). References 104 and 105 describe in two plant species the role of RB protein in controlling the balance between cell proliferation and endoreplication, as well as its requirement for endocycle progression in a cell type-specific manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Borghi, L. et al. Arabidopsis RETINOBLASTOMA-RELATED is required for stem cell maintenance, cell differentiation, and lateral organ production. Plant Cell 22, 1792–1811 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gutzat, R., Borghi, L. & Gruissem, W. Emerging roles of RETINOBLASTOMA-RELATED proteins in evolution and plant development. Trends Plant Sci. 17, 139–148 (2012).

    CAS  PubMed  Google Scholar 

  108. Magyar, Z. et al. Arabidopsis E2FA stimulates proliferation and endocycle separately through RBR-bound and RBR-free complexes. EMBO J. 31, 1480–1493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Castellano, M. et al. DNA replication licensing affects cell proliferation or endoreplication in a cell type-specific manner. Plant Cell 16, 2380–2393 (2004).

    CAS  Google Scholar 

  110. Castellano, M. M., del Pozo, J. C., Ramirez-Parra, E., Brown, S. & Gutierrez, C. Expression and stability of Arabidopsis CDC6 are associated with endoreplication. Plant Cell 13, 2671–2686 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Roeder, A. H. et al. Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLoS Biol. 8, e1000367 (2010).

    PubMed  PubMed Central  Google Scholar 

  112. Takahashi, N. et al. The DNA replication checkpoint aids survival of plants deficient in the novel replisome factor ETG1. EMBO J. 27, 1840–1851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, Z. Y., Li, B. & Dong, A. W. The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cell-cycle genes. Mol. Plant 5, 270–280 (2012).

    CAS  PubMed  Google Scholar 

  114. Weimer, A. K. et al. Retinoblastoma related1 regulates asymmetric cell divisions in Arabidopsis. Plant Cell 24, 4083–4095 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Morohashi, K. & Grotewold, E. A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet. 5, e1000396 (2009).

    PubMed  PubMed Central  Google Scholar 

  116. Johnston, A. J. et al. Dosage-sensitive function of retinoblastoma related and convergent epigenetic control are required during the Arabidopsis life cycle. PLoS Genet. 6, e1000988 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Walker, J. D., Oppenheimer, D. G., Concienne, J. & Larkin, J. C. SIAMESE, a gene controlling the endoreduplication cell cycle in Arabidopsis thaliana trichomes. Development 127, 3931–3940 (2000).

    CAS  PubMed  Google Scholar 

  118. Churchman, M. L. et al. SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. Plant Cell 18, 3145–3157 (2006). SIM and SMR proteins are plant-specific CKIs that suppress mitosis by binding to CDKA and the plant-specific CDKB1 proteins. Reveals that the SIM and SMR proteins cooperate with the CCS52 family of APC/C activators to abolish mitotic activity, thereby promoting endoreplication onset.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Haga, N. et al. Mutations in MYB3R1 and MYB3R4 cause pleiotropic developmental defects and preferential down-regulation of multiple G2/M-specific genes in Arabidopsis. Plant Physiol. 157, 706–717 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Jakoby, M. J. et al. Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiol. 148, 1583–1602 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, H. et al. ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J. 15, 501–510 (1998).

    PubMed  Google Scholar 

  122. Skirycz, A. et al. Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23, 1876–1888 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Claeys, H., Skirycz, A., Maleux, K. & Inze, D. DELLA signaling mediates stress-induced cell differentiation in Arabidopsis leaves through modulation of anaphase-promoting complex/cyclosome activity. Plant Physiol. 159, 739–747 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Adachi, S. et al. Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis. Proc. Natl Acad. Sci. USA 108, 10004–10009 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ramirez-Parra, E. & Gutierrez, C. E2F regulates FASCIATA1, a chromatin assembly gene whose loss switches on the endocycle and activates gene expression by changing the epigenetic status. Plant Physiol. 144, 105–120 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Exner, V., Taranto, P., Schonrock, N., Gruissem, W. & Hennig, L. Chromatin assembly factor CAF-1 is required for cellular differentiation during plant development. Development 133, 4163–4172 (2006).

    CAS  PubMed  Google Scholar 

  127. Berckmans, B. et al. Light-dependent regulation of DEL1 is determined by the antagonistic action of E2Fb and E2Fc. Plant Physiol. 157, 1440–1451 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Gendreau, E., Hofte, H., Grandjean, O., Brown, S. & Traas, J. Phytochrome controls the number of endoreduplication cycles in the Arabidopsis thaliana hypocotyl. Plant J. 13, 221–230 (1998).

    CAS  PubMed  Google Scholar 

  129. Datar, S. A., Jacobs, H. W., de la Cruz, A. F., Lehner, C. F. & Edgar, B. A. The Drosophila cyclin D–Cdk4 complex promotes cellular growth. EMBO J. 19, 4543–4554 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Asano, M., Nevins, J. R. & Wharton, R. P. Ectopic E2F expression induces S phase and apoptosis in Drosophila imaginal discs. Genes Dev. 10, 1422–1432 (1996).

    CAS  PubMed  Google Scholar 

  131. Shibutani, S., Swanhart, L. M. & Duronio, R. J. Rbf1-independent termination of E2f1-target gene expression during early Drosophila embryogenesis. Development 134, 467–478 (2007).

    CAS  PubMed  Google Scholar 

  132. Shibutani, S. T. et al. Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev. Cell 15, 890–900 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Arias, E. E. & Walter, J. C. PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nature Cell Biol. 8, 84–90 (2006).

    CAS  PubMed  Google Scholar 

  134. Knoblich, J. A. et al. Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77, 107–120 (1994).

    CAS  PubMed  Google Scholar 

  135. Duronio, R. J., O'Farrell, P. H., Xie, J. E., Brook, A. & Dyson, N. The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev. 9, 1445–1455 (1995).

    CAS  PubMed  Google Scholar 

  136. Lilly, M. A. & Spradling, A. C. The Drosophila endocycle is controlled by Cyclin E and lacks a checkpoint ensuring S-phase completion. Genes Dev. 10, 2514–2526 (1996).

    CAS  PubMed  Google Scholar 

  137. Moberg, K. H., Bell, D. W., Wahrer, D. C., Haber, D. A. & Hariharan, I. K. Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413, 311–316 (2001).

    CAS  PubMed  Google Scholar 

  138. Welcker, M. & Clurman, B. E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Rev. Cancer 8, 83–93 (2008).

    CAS  Google Scholar 

  139. Pines, J. Cubism and the cell cycle: the many faces of the APC/C. Nature Rev. Mol. Cell Biol. 12, 427–438 (2011).

    CAS  Google Scholar 

  140. Narbonne-Reveau, K. et al. APC/CFzr/Cdh1 promotes cell cycle progression during the Drosophila endocycle. Development 135, 1451–1461 (2008). Together with reference 62 this study shows that the activity of the APC/C is essential for endocycle progression in D. melanogaster . A remarkable finding, because the prevailing view, at this time, was that APC/C activity was only required for endocycle initiation.

    CAS  PubMed  Google Scholar 

  141. Caro, E. & Gutierrez, C. A green GEM: intriguing analogies with animal geminin. Trends Cell Biol. 17, 580–585 (2007).

    CAS  PubMed  Google Scholar 

  142. de Nooij, J. C., Graber, K. H. & Hariharan, I. K. Expression of the cyclin-dependent kinase inhibitor Dacapo is regulated by cyclin E. Mech. Dev. 97, 73–83 (2000).

    CAS  PubMed  Google Scholar 

  143. Hong, A. et al. The cyclin-dependent kinase inhibitor Dacapo promotes replication licensing during Drosophila endocycles. EMBO J. 26, 2071–2082 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Nordman, J. & Orr-Weaver, T. L. Regulation of DNA replication during development. Development 139, 455–464 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hattori, N., Davies, T. C., Anson-Cartwright, L. & Cross, J. C. Periodic expression of the cyclin-dependent kinase inhibitor p57Kip2 in trophoblast giant cells defines a G2-like gap phase of the endocycle. Mol. Biol. Cell 11, 1037–1045 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, Y. et al. Deletion of the Cul1 gene in mice causes arrest in early embryogenesis and accumulation of cyclin E. Curr. Biol.: CB 9, 1191–1194 (1999).

    CAS  PubMed  Google Scholar 

  147. Sher, N. et al. Fundamental differences in endoreplication in mammals and Drosophila revealed by analysis of endocycling and endomitotic cells. Proc. Natl Acad. Sci. USA 110, 9368–9373 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Weinl, C. et al. Novel functions of plant cyclin-dependent kinase inhibitors, ICK1/KRP1, can act non-cell-autonomously and inhibit entry into mitosis. Plant Cell 17, 1704–1722 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Wen, B., Nieuwland, J. & Murray, J. A. The Arabidopsis CDK inhibitor ICK3/KRP5 is rate limiting for primary root growth and promotes growth through cell elongation and endoreduplication. J. Exp. Bot. 64, 1135–1144 (2013).

    CAS  PubMed  Google Scholar 

  150. Nafati, M. et al. The specific overexpression of a cyclin-dependent kinase inhibitor in tomato fruit mesocarp cells uncouples endoreduplication and cell growth. Plant J. 65, 543–556 (2011).

    CAS  PubMed  Google Scholar 

  151. Coelho, C. M. et al. Cyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoreduplication. Plant Physiol. 138, 2323–2336 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim, H. J. et al. Control of plant germline proliferation by SCFFBL17 degradation of cell cycle inhibitors. Nature 455, 1134–1137 (2008).

    CAS  PubMed  Google Scholar 

  153. Zhao, X. et al. A general G1/S-phase cell-cycle control module in the flowering plant Arabidopsis thaliana. PLoS Genet. 8, e1002847 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Gusti, A. et al. The Arabidopsis thaliana F-box protein FBL17 is essential for progression through the second mitosis during pollen development. PLoS ONE 4, e4780 (2009).

    PubMed  PubMed Central  Google Scholar 

  155. Taniue, K. et al. Sunspot, a link between Wingless signaling and endoreplication in Drosophila. Development 137, 1755–1764 (2010).

    CAS  PubMed  Google Scholar 

  156. Britton, J. S. & Edgar, B. A. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 125, 2149–2158 (1998). Shows that the rate of endoreplication in polyploid tissues of D. melanogaster is sensitive to the protein content in their diet, which implies the existence of an intrinsic growth sensor.

    CAS  PubMed  Google Scholar 

  157. Saucedo, L. J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nature Cell Biol. 5, 566–571 (2003).

    CAS  PubMed  Google Scholar 

  158. Grewal, S. S., Li, L., Orian, A., Eisenman, R. N. & Edgar, B. A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nature Cell Biol. 7, 295–302 (2005).

    CAS  PubMed  Google Scholar 

  159. Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M. & Edgar, B. A. Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2, 239–249 (2002).

    CAS  PubMed  Google Scholar 

  160. Demontis, F. & Perrimon, N. Integration of Insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila. Development 136, 983–993 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Pierce, S. B. et al. dMyc is required for larval growth and endoreplication in Drosophila. Development 131, 2317–2327 (2004).

    CAS  PubMed  Google Scholar 

  162. Buttitta, L. A. & Edgar, B. A. Mechanisms controlling cell cycle exit upon terminal differentiation. Curr. Opin. Cell Biol. 19, 697–704 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Sun, J., Smith, L., Armento, A. & Deng, W. M. Regulation of the endocycle/gene amplification switch by Notch and ecdysone signaling. J. Cell Biol. 182, 885–896 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Sher, N. et al. Developmental control of gene copy number by repression of replication initiation and fork progression. Genome Res. 22, 64–75 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Lazzerini Denchi, E., Celli, G. & de Lange, T. Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication. Genes Dev. 20, 2648–2653 (2006).

    PubMed  PubMed Central  Google Scholar 

  166. Jacob, Y. et al. Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases. Nature 466, 987–991 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Lermontova, I. et al. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18, 2443–2451 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Tamori, Y. & Deng, W. M. Tissue repair through cell competition and compensatory cellular hypertrophy in postmitotic epithelia. Dev. Cell 25, 350–363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Losick, V. P., Fox, D. T. & Spradling, A. C. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium. Curr. Biol. 23, 2224–2232 (2013). References 168 and 169 demonstrated that cell loss in D. melanogaster epithelia is similar to the cell loss in the mammalian heart or liver, which is compensated by endoreplication-induced cellular hypertrophy. Highlights the importance of D. melanogaster as a model for liver and cardiac regeneration.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Gentric, G., Celton-Morizur, S. & Desdouets, C. Polyploidy and liver proliferation. Clin. Res. Hepatol Gastroenterol. 36, 29–34 (2012).

    CAS  PubMed  Google Scholar 

  171. Grisham, J. W. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. 22, 842–849 (1962).

    CAS  PubMed  Google Scholar 

  172. Bucher, N. L. & Swaffield, M. N. The Rate of incorporation of labeled thymidine into the deoxyribonucleic acid of regenerating rat liver in relation to the amount of liver excised. Cancer Res. 24, 1611–1625 (1964).

    CAS  PubMed  Google Scholar 

  173. Miyaoka, Y. et al. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr. Biol. 22, 1166–1175 (2012). Uses a new imaging-cytometric approach, which reveals that endoreplication-induced cellular hypertrophy contributes to liver regeneration in mice, and thereby extended the generally accepted model of liver regeneration.

    CAS  PubMed  Google Scholar 

  174. Sigal, S. H. et al. Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events. Am. J. Physiol. 276, G1260–1272 (1999).

    CAS  PubMed  Google Scholar 

  175. Gorla, G. R., Malhi, H. & Gupta, S. Polyploidy associated with oxidative injury attenuates proliferative potential of cells. J. Cell Sci. 114, 2943–2951 (2001).

    CAS  PubMed  Google Scholar 

  176. Wirth, K. G. et al. Separase: a universal trigger for sister chromatid disjunction but not chromosome cycle progression. J. Cell Biol. 172, 847–860 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Diril, M. K. et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl Acad. Sci. USA 109, 3826–3831 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Herget, G. W., Neuburger, M., Plagwitz, R. & Adler, C. P. DNA content, ploidy level and number of nuclei in the human heart after myocardial infarction. Cardiovasc. Res. 36, 45–51 (1997).

    CAS  PubMed  Google Scholar 

  179. Ramirez-Parra, E. & Gutierrez, C. The many faces of chromatin assembly factor 1. Trends Plant Sci. 12, 570–576 (2007).

    CAS  PubMed  Google Scholar 

  180. Mehrotra, S., Maqbool, S. B., Kolpakas, A., Murnen, K. & Calvi, B. R. Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress. Genes Dev. 22, 3158–3171 (2008). Reveals that the expression of pro-apoptotic genes is dampened in the polyploid tissues of D. melanogaster and that this prevents cell death in response to genotoxic stress. These findings are of particular importance because they provide an explanation for why polyploid tissues tolerate the presence of free DNA ends at under-replicated regions (for example, heterochromatin).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Celli, G. B., Denchi, E. L. & de Lange, T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nature Cell Biol. 8, 885–890 (2006).

    PubMed  Google Scholar 

  182. Smogorzewska, A., Karlseder, J., Holtgreve-Grez, H., Jauch, A. & de Lange, T. DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr. Biol. 12, 1635–1644 (2002).

    CAS  PubMed  Google Scholar 

  183. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    CAS  PubMed  Google Scholar 

  184. Davoli, T., Denchi, E. L. & de Lange, T. Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141, 81–93 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Ma, H. T., Tsang, Y. H., Marxer, M. & Poon, R. Y. Cyclin A2–cyclin-dependent kinase 2 cooperates with the PLK1–SCFβ-TrCP1–EMI1-anaphase-promoting complex/cyclosome axis to promote genome reduplication in the absence of mitosis. Mol. Cell. Biol. 29, 6500–6514 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Sakaue-Sawano, A., Kobayashi, T., Ohtawa, K. & Miyawaki, A. Drug-induced cell cycle modulation leading to cell-cycle arrest, nuclear mis-segregation, or endoreplication. BMC Cell Biol. 12, 2 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Davoli, T. & de Lange, T. Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21, 765–776 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.A.E. was supported by European Research Council Advanced Grant 268515 and the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), N.Z. by the DKFZ, and C.G. by MINECO (BFU2009-9783 and BFU2012-34821) and by an institutional grant from Fundacion Ramon Areces. The authors thank C. de Renty, Z. Ullah and M. Depamphilis for the image of TGCs shown in figure 4Bc and B. Desvoyes and S. Otero for the image of Arabidopsis thaliana shown in figure 4Cc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Edgar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Endocycle-to-mitosis transitions and ploidy reversal (PDF 609 kb)

Supplementary information S2 (table)

Endocycle phenotypes in Drosophila melanogaster (PDF 630 kb)

Supplementary information S3 (table)

Endocycle phenotypes in mammals (PDF 617 kb)

Supplementary information S4 (table)

Endocycle phenotypes in Arabidopsis thaliana (PDF 634 kb)

Supplementary information S5 (table)

Upstream regulators of the endocycle (PDF 601 kb)

PowerPoint slides

Glossary

Polyploid

Refers to the genomic DNA of a cell in which entire chromosomes have been re-replicated. 'Polytene' refers to a subset of polyploid cells in which homologous chromosome arms are closely paired, which leads to the appearance of single, giant chromosomes.

Endomitosis

A cell cycle that includes S phase and many mitotic processes, including chromosome condensation, nuclear envelope breakdown and spindle formation. Endomitotic cell cycles abort mitosis during metaphase or anaphase, and lack cytokinesis. However, kinetochores and centromeres might or might not split at the metaphase–anaphase transition; these cycles do not produce two nuclei.

Endopolyploidy

Polyploidy that occurs in somatic cell lineages, following endoreplication of diploid progenitor cells. Not to be confused with germline polyploidy, which is heritable, occurs in all cells in an organism and can affect speciation.

Chromatin-values

(C). C-values indicate DNA content as a multiple of the normal haploid genome. A sperm or egg nucleus is 1 C, a zygote is 2 C and a diploid cell in G2 is 4 C. A cell that has undergone one round of endoreplication (starting from G2) is 8 C, two rounds result in 16 C, and so on.

Trophoblast giant cells

(TGCs). Mammalian placental cells that are essential for embryonic implantation and placentation, in which they function as a barrier between the maternal blood supply and the embryo proper.

Cell expansion

A term referring to the cell size increase in plant cells. As this often occurs by increasing the size of the fluid-filled vacuole, it is not necessarily accompanied by increased mass of proteinaceous cytoplasm.

Pre-replication complexes

(PreRCs). This multi-protein complex assembles on the DNA during G1 phases, at origins of replication, using pre-bound origin replication complex proteins as a template. PreRCs are necessary for the initiation of DNA replication and include CDC10-dependent transcript 1 (CDT1), CDC6 and the replication-associated DNA helicase, which is composed of mini-chromosome maintenance complex 2–7 (MCM2–7).

Hypertrophy

An increase in cell size beyond the norm for a given cell type. This may or may not be associated with endopolyploidy.

Aneuploidy

A cell having an aberrant number of chromosomes that is not a multiple of two of the number of chromosomes found in the normal haploid germline. 'Segmental aneuploidy' refers to changes in gene copy number owing to deletions or duplications of portions of chromosomes.

APC/C

(Anaphase promoting complex, also known as the cyclosome). A conserved complex of >ten proteins that has E3 ubiquitin ligase activity and targets important mitotic regulators for 26S proteasome-dependent degradation beginning at metaphase–anaphase transitions. The APC/C has two regulatory adaptor proteins: CDC20 (also known as FZY), which is active during mitosis, and CDC20 homologue 1 (CDH1; also known as FZR), which is active during G1 and some endocycle gap phases.

CRL4Cdt2

An E3 ubiquitin ligase complex composed of Cullin 4 (Cul4), Ddb1, Cdt2 (Cdc10-dependent transcript 2; a DCAF), and Rbx1. This ubiquitin ligase acts specifically on substrates that are recruited to DNA replication fork complexes by a PIP box (PCNA-interacting protein) motif, which binds the DNA replication fork protein, PCNA (proliferating cell nuclear antigen).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edgar, B., Zielke, N. & Gutierrez, C. Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 15, 197–210 (2014). https://doi.org/10.1038/nrm3756

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3756

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing