Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma

Abstract

Intrahepatic cholangiocarcinoma is typically characterized by a dense desmoplastic stroma, of which cancer-associated myofibroblasts (which express α-smooth muscle actin), are a major cellular component. These stromal myofibroblasts have a crucial role in accelerating the progression of intrahepatic cholangiocarcinoma and in promoting resistance to therapy through interactive autocrine and paracrine signaling pathways that promote malignant cell proliferation, migration, invasiveness, apoptosis resistance and/or epithelial–mesenchymal transition. These changes correlate with aggressive tumor behavior. Hypoxic desmoplasia and aberrant Hedgehog signaling between stromal myofibroblastic cells and cholangiocarcinoma cells are also critical modulators of intrahepatic cholangiocarcinoma progression and therapy resistance. A novel strategy has been developed to achieve improved therapeutic outcomes in patients with advanced intrahepatic cholangiocarcinoma, based on targeting of multiple interactive pathways between cancer-associated myofibroblasts and intrahepatic cholangiocarcinoma cells that are associated with disease progression and poor survival. Unique organotypic cell culture and orthotopic rat models of cholangiocarcinoma progression are well suited to the rapid preclinical testing of this potentially paradigm-shifting strategy.

Key Points

  • Increasing, albeit largely anecdotal, evidence indicates that the desmoplastic stroma has a prominent role in promoting intrahepatic cholangiocarcinoma (ICC) progression

  • Cancer-associated myofibroblasts, which express α-smooth muscle actin, mediate proliferation, migration, invasion, apoptosis resistance and epithelial–mesenchymal transition of ICC cells, through autocrine and paracrine signaling pathways

  • Hypoxia and aberrant Hedgehog signaling associated with interactions between tumor stromal myofibroblasts and cholangiocarcinoma cells probably act as important modulators of ICC progression and resistance to therapy

  • Targeting of both stromal and ICC cell components could translate into therapies for advanced ICC, which are likely to be more effective than single agents against carcinoma cells alone

  • Unique organotypic culture and orthotopic rat models of human ICC are being established to identify and test therapeutic strategies that target stromal cell–cancer cell interactions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photomicrograph of a typical tissue section of an experimentally induced intrahepatic cholangiocarcinoma in rat showing numerous stromal CAFs that express α-SMA (arrows).
Figure 2: Selected interactive molecular pathways that promote increased cholangiocarcinoma cell invasion, metastasis and apoptosis resistance.
Figure 3: Combined targeting of α-SMA+CAF and cholangiocarcinoma cell molecular pathways as a new strategy for ICC therapy.

Similar content being viewed by others

References

  1. Patel, T. Cholangiocarcinoma—controversies and challenges. Nat. Rev. Gastroenterol. Hepatol. 8, 189–200 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ellis, M. C. et al. Surgical treatment of intrahepatic cholangiocarcinoma: outcomes and predictive factors. HPB (Oxford) 13, 59–63 (2011).

    Article  Google Scholar 

  3. Shin, H.-R. et al. Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Sci. 101, 579–585 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Cardinale, V. et al. Intra-hepatic and extra-hepatic cholangiocarcinoma: new insight into epidemiology and risk factors. World J. Gastrointest. Oncol. 2, 407–416 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nakanuma, Y. et al. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J. Hepatol. 2, 419–427 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sirica, A. E. et al. Intrahepatic cholangiocarcinoma progression: prognostic factors and basic mechanisms. Clin. Gastroenterol. Hepatol. 7 (Suppl.), S68–S78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gatto, M. & Alvaro, D. Cholangiocarcinoma: risk factors and clinical presentation. Eur. Rev. Med. Pharmacol. Sci. 14, 363–367 (2010).

    CAS  PubMed  Google Scholar 

  8. Gatto, M. et al. Cholangiocarcinoma: update and future perspectives. Dig. Liver Dis. 42, 253–260 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Sempoux, C. et al. Intrahepatic cholangiocarcinoma: new insights in pathology. Semin. Liver Dis. 31, 49–60 (2011).

    Article  PubMed  Google Scholar 

  10. Zografos, G. N., Farfaras, A., Zagouri, F., Chrysikos, D. & Karaliotas, K. Cholangiocarcinoma: principles and current trends. Hepatobiliary Pancreat. Dis. Int. 10, 10–20 (2011).

    Article  PubMed  Google Scholar 

  11. Shirakawa, H. et al. Glypican-3 is a useful diagnostic marker for a component of hepatocellular carcinoma in human liver cancer. Int. J. Oncol. 34, 649–656 (2009).

    CAS  PubMed  Google Scholar 

  12. Kajiyama, K., Maeda, T., Takenaka, K., Sugimachi, K. & Tsuneyoshi, M. The significance of stromal desmoplasia in intrahepatic cholangiocarcinoma: a special reference of 'scirrhous-type' and 'nonscirrhous-type' growth. Am. J. Surg. Pathol. 23, 892–902 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Sirica, A. E., Campbell, D. J. & Dumur, C. I. Cancer-associated fibroblasts in intrahepatic cholangiocarcinoma. Curr. Opin. Gastroenterol. 27, 276–284 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Hartel, M. et al. Desmoplastic reaction influences pancreatic cancer growth behavior. World J. Surg. 28, 818–825 (2004).

    Article  PubMed  Google Scholar 

  15. Angeli, F., Koumakis, G., Chen, M.-C., Kumar, S. & Delinassios, J. G. Role of stromal fibroblasts in cancer: promoting or impeding? Tumour Biol. 30, 109–120 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Chuaysri, C. et al. α-Smooth muscle actin-positive fibroblasts promote biliary cell proliferation and correlate with poor survival in cholangiocarcinoma. Oncol. Rep. 21, 957–969 (2009).

    CAS  PubMed  Google Scholar 

  17. Okabe, H. et al. Hepatic stellate cells may relate to progression of intrahepatic cholangiocarcinoma. Ann. Surg. Oncol. 16, 2555–2564 (2009).

    Article  PubMed  Google Scholar 

  18. Dranoff, J. A. & Wells, R. G. Portal fibroblasts: underappreciated mediators of biliary fibrosis. Hepatology 51, 1438–1444 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Quante, M. et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19, 257–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ishii, G. et al. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem. Biophys. Res. Commun. 309, 232–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Li, T. et al. Epithelial–mesenchymal transition induced by hepatitis C virus core protein in cholangiocarcinoma. Ann. Surg. Oncol. 17, 1937–1944 (2010).

    Article  PubMed  Google Scholar 

  22. Korita, P. V. et al. Aberrant expression of vimentin correlates with dedifferentiation and poor prognosis in patients with intrahepatic cholangiocarcinoma. Anticancer Res. 30, 2279–2285 (2010).

    PubMed  Google Scholar 

  23. Sato, Y. et al. Epithelial–mesencymal transition induced by transforming growth factor-β1/Snail activation aggravates invasive growth of cholangiocarcinoma. Am. J. Pathol. 177, 141–152 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aishima, S. et al. Lymphatic spread is related to VEGF-C expression and D2-40-positive myofibroblasts in intrahepatic cholangiocarcinoma. Mod. Pathol. 21, 256–264 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Nishihara, Y. et al. CD10+ fibroblasts are more involved in the progression of hilar/extrahepatic cholangiocarcinoma than of peripheral intrahepatic cholangiocarcinoma. Histopathology 55, 423–431 (2009).

    Article  PubMed  Google Scholar 

  26. Hasita, H. et al. Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci. 101, 1913–1919 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Baril, P. et al. Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the β4 integrin and the PI3K pathway. Oncogene 26, 2082–2094 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Kanno, A. et al. Periostin, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells. Int. J. Cancer 122, 2707–2718 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Utispan, K. et al. Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Molecular Cancer 9, 13 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Michaylira, C. Z. et al. Periostin, a cell adhesion molecule, facilitates invasion in the tumor microenvironment and annotates a novel tumor-invasive signature in esophageal cancer. Cancer Res. 70, 5281–5292 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aishima, S. et al. Tenascin expression at the invasive front is associated with poor prognosis in intrahepatic cholangiocarcinoma. Mod. Pathol. 16, 1019–1027 (2003).

    Article  PubMed  Google Scholar 

  32. Chen, J. et al. Role of fibrillar tenascin-C in metastatic pancreatic cancer. Int. J. Oncol. 34, 1029–1036 (2009).

    CAS  PubMed  Google Scholar 

  33. Date, K. et al. Inhibition of tumor growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor. Oncogene 17, 3045–3054 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Matsumoto, K. & Nakamura, T. Hepatocyte growth factor and the Met system as a mediator of tumor–stromal interactions. Int. J. Cancer 119, 477–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Menakongka, A. & Suthiphongchai, T. Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion. World J. Gastroenterol. 16, 713–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grugan, K. D. et al. Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion. Proc. Natl Acad. Sci. USA 107, 11026–11031 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Ohira, S. et al. Possible regulation of migration of intrahepatic cholangiocarcinoma cells by interaction of CXCR4 expressed in carcinoma cells with tumor necrosis factor-α and stromal-derived factor-1 released in stroma. Am. J. Pathol. 168, 1155–1168 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leelawat, K., Leelawat, S., Narong, S. & Hongeng, S. Roles of the MEK1/2 and AKT pathways in CXCL12/CXCR4 induced cholangiocarcinoma cell invasion. World J. Gastroenterol. 13, 1561–1568 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tanaka, S. et al. Human WISP1v, a member of the CCN family, is associated with invasive cholangiocarcinoma. Hepatology 37, 1122–1129 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Bao, S. et al. Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5, 329–339 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Ruan, K., Bao, S. & Ouyang, G. The multifaceted role of periostin in tumorigenesis. Cell. Mol. Life Sci. 66, 2219–2230 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Fingas, C. D. et al. Myofibroblast-derived PDGF-BB promotes Hedgehog signaling-dependent resistance to TRAIL cytotoxicity in cholangiocarcinoma cells [abstract]. Gastroenterol. 140 (Suppl.), S909 (2011).

    Article  Google Scholar 

  43. Vandoros, G. P. et al. PPAR-γ is expressed and NF-κB pathway is activated and correlates positively with COX-2 expression in stromal myofibroblasts surrounding colon adenocarcinomas. J. Cancer Res. Clin. Oncol. 132, 76–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Omura, N. et al. Cyclooxygenase-deficient pancreatic cancer cells use exogenous sources of prostaglandins. Mol. Cancer Res. 8, 821–832 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davaille, J., Li, L., Mallat, A. & Lotersztajn, S. Sphingosine 1-phosphate triggers both apoptotic and survival signals for human hepatic myofibroblasts. J. Biol. Chem. 277, 37323–37330 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Dumur, C. I., Campbell, D. J. W., DeWitt, J. L., Oyesanya, R. A. & Sirica, A. E. Differential gene expression profiling of cultured neu-transformed versus spontaneously-transformed rat cholangiocytes and of corresponding cholangiocarcinomas. Exp. Mol. Pathol. 89, 227–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ponnusamy, S. et al. Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol. 6, 1603–1624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kawahara, N. et al. Enhanced expression of thrombospondin-1 and hypovascularity in human cholangiocarcinoma. Hepatology 28, 1512–1517 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Tang, D. et al. Angiogenesis in cholangiocellular carcinoma: expression of vascular endothelial growth factor, angiopoietin-1/2, thrombospondin-1 and clinicopathological significance. Oncol. Rep. 15, 525–532 (2006).

    CAS  PubMed  Google Scholar 

  50. Shimizu, K. Pancreatic stellate cells: molecular mechanism of pancreatic fibrosis. J. Gastroenterol. Hepatol. 23 (Suppl. 1), S119–S121 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Li, Z. et al. Transforming growth factor-β and substrate stiffness regulate portal fibroblast activation in culture. Hepatology 46, 1246–1256 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Kinnman, N. et al. The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis. Lab. Invest. 83, 163–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Li, G. et al. RNA interfering connective tissue growth factor prevents rat hepatic stellate cell activation and extracellular matrix production. J. Gene Med. 10, 1039–1047 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Hong, F. et al. Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1α-mediated stellate cell activation. Hepatology 49, 2055–2067 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maeda, N. et al. Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways. J. Biol. Chem. 278, 18938–18944 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Fitzner, B. et al. Galectin-1 is an inductor of pancreatic stellate cell activation. Cell Signal. 17, 1240–1247 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Okamoto, K. et al. Angiotensin II induces tumor progression and fibrosis in intrahepatic cholangiocarcinoma through an interaction with hepatic stellate cells. Int. J. Oncol. 37, 1251–1259 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Nishino, R. et al. Identification of novel candidate tumour marker genes for intrahepatic cholangiocarcinoma. J. Hepatol. 49, 207–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Yasuoka, H. et al. The fibrotic phenotype induced by IGFBP-5 is regulated by MAPK activation and Egr-1-dependent and -independent mechanisms. Am. J. Pathol. 175, 605–615 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sureshbabu, A. et al. IGFBP-5 induces epithelial and fibroblast responses consistent with the fibrotic response. Biochem. Soc. Trans. 37, 882–885 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, L.-X. et al. Insulin-like growth factor binding protein-7 induces activation and transdifferentiation of hepatic stellate cells in vitro. World J. Gastroenterol. 15, 3246–3253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Terada, T., Okada, Y. & Nakanuma, Y. Expression of immunoreactive matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human normal livers and primary liver tumors. Hepatology 23, 1341–1344 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Cohen, S. J. et al. Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas 37, 154–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Räsänen, K. & Vaheri, A. Activation of fibroblasts in cancer stroma. Exp. Cell Res. 316, 2713–2722 (2010).

    Article  PubMed  CAS  Google Scholar 

  65. Prakobwong, S. et al. Involvement of MMP-9 in peribiliary fibrosis and cholangiocarcinogenesis via Rac1-dependent DNA damage in a hamster model. Int. J. Cancer 127, 2576–2587 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Bornstein, P. Matricellular proteins: an overview. J. Cell Commun. Signal. 3, 163–165 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kii, I. et al. Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J. Biol. Chem. 285, 2028–2039 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Symoens, S. et al. Identification of binding partners interacting with the α1-N.-propeptide of type V collagen. Biochem. J. 433, 371–381 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. To, W. S. & Midwood, K. S. Identification of novel and distinct binding sites within tenascin-C for soluble and fibrillar fibronectin. J. Biol. Chem. 286, 14881–14891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chiquet-Ehrismann, R. & Tucker, R. P. Tenascins and the importance of adhesion modulation. Cold Spring Harb. Perspect. Biol. 3, http://dx.doi.org/10.1101/cshperspect.a004960 (2011).

  71. Okamura, N. et al. Cellular and stromal characteristics in the scirrhous hepatocellular carcinoma: comparison with hepatocellular carcinomas and intrahepatic cholangiocarcinomas. Pathol. Int. 55, 724–731 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Gillan, L. et al. Periostin secreted by epithelial ovarian carcinoma is a ligand for αVβ3 and αVβ5 integrins and promotes cell motility. Cancer Res. 62, 5358–5364 (2002).

    CAS  PubMed  Google Scholar 

  73. Orend, G. & Chiquet-Ehrismann, R. Tenascin-C induced signaling in cancer. Cancer Lett. 244, 143–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Jang, J.-H. & Chung, C.-P. Tenascin-C promotes cell survival by activation of Akt in human chondrosarcoma cell. Cancer Lett. 229, 101–105 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Nagaharu, K. et al. Tenascin C induces epithelial-mesenchymal transition-like change accompanied by SRC activation and focal adhesion kinase phosphorylation in human breast cancer cells. Am. J. Pathol. 178, 754–763 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, Y. & Liu, B.-A. Enhanced proliferation, invasion, and epithelial–mesenchymal transition of nicotine-promoted gastric cancer by periostin. World J. Gastroenterol. 17, 2674–2680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tucker, R. P. & Chiquet-Ehrismann, R. The regulation of tenascin expression by tissue microenvironments. Biochim. Biophys. Acta 1793, 888–892 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Pongchairerk, U., Guan, J. L. & Leardkamolkarn, V. Focal adhesion kinase and Src phosphorylations in HGF-induced proliferation and invasion of human cholangiocarcinoma cell line, HuCCA-1. World J. Gastroenterol. 11, 5845–5852 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. De Wever, O. et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent proinvasive signals to human colon cancer cells through RhoA and Rac. FASEB J. 18, 1016–1018 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Taraseviciute, A., Vincent, B. T., Schedin, P. & Jones, P. L. Quantitative analysis of three-dimensional human mammary epithelial tissue architecture reveals a role for tenascin-C in regulating c-Met function. Am. J. Pathol. 176, 827–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ohira, S. et al. Local balance of transforming growth factor-β1 secreted from cholangiocarcinoma cells and stromal-derived factor-1 secreted from stromal fibroblasts is a factor involved in invasion of cholangiocarcinoma. Pathol. Int. 56, 381–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Maroni, P., Bendinelli, P., Matteucci, E. & Desiderio, M. A. HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-κB. Carcinogenesis 28, 267–279 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Tu, H. et al. CXCR4 and SDF-1 production are stimulated by hepatocyte growth factor and promote glioma cell invasion. Onkologie 32, 331–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Esencay, M., Newcomb, E. W. & Zagzag, D. HGF upregulates CXCR4 expression in gliomas via NF-κB: implications for glioma cell migration. J. Neurooncol. 99, 33–40 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Majka, M. et al. SDF-1 alone and in co-operation with HGF regulates biology of human cervical carcinoma cells. Folia Histochem. Cytobiol. 44, 155–164 (2006).

    CAS  PubMed  Google Scholar 

  86. Fujita, H. et al. Tumor-stromal interactions with direct cell contacts enhance proliferation of human pancreatic carcinoma cells. Cancer Sci. 100, 2309–2317 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Jiang, L. et al. Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res. 68, 9900–9908 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shimoda, M., Mellody, K. T. & Orimo, A. Cancer-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin. Cell Dev. Biol. 21, 19–25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schrader, J. et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 53, 1192–1205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Miyamoto, H. et al. Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins. Pancreas 28, 38–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Ide, T. et al. The hypoxic environment in tumor-stromal cells accelerates pancreatic cancer progression via the activation of paracrine hepatocyte growth factor/c-Met signaling. Ann. Surg. Oncol. 14, 2600–2607 (2007).

    Article  PubMed  Google Scholar 

  92. Giaccia, A. J. & Schipani, E. Role of carcinoma-associated fibroblasts and hypoxia in tumor progression. Curr. Top. Microbiol. Immunol. 345, 31–45 (2010).

    CAS  PubMed  Google Scholar 

  93. Omenetti, A. & Diehl, A. M. Hedgehog signaling in cholangiocytes. Curr. Opin. Gastroenterol. 27, 268–275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Walter, K. et al. Overexpression of smoothened activates the sonic hedgehog signaling pathway in pancreatic cancer-associated fibroblasts. Clin. Cancer Res. 16, 1781–1789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Finger, E. C. & Giaccia, A. J. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev. 29, 285–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kitajima, Y., Ide, T., Ohtsuka, T. & Miyazaki, K. Induction of hepatocyte growth factor activator gene expression under hypoxia activates the hepatocyte growth factor/c-Met system via hypoxia inducible factor-1 in pancreatic cancer. Cancer Sci. 99, 1341–1347 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Erkan, M. et al. Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 11, 497–508 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ouyang, G. et al. Upregulated expression of periostin by hypoxia in non-small-cell lung cancer cells promotes cell survival via the Akt/PKB pathway. Cancer Lett. 281, 213–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Chu, S.-H. et al. Stabilization of hepatocyte growth factor mRNA by hypoxia-inducible factor 1. Mol. Biol. Rep. 36, 1967–1975 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, H. et al. Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1α in MSCs. Biochem. Biophys. Res. Commun. 401, 509–515 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Zhao, X.-Y. et al. Hypoxia inducible factor-1 mediates expression of galectin-1: the potential role in migration/invasion of colorectal cancer cells. Carcinogenesis 31, 1367–1375 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Distler, J. H. W. et al. Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis. Arthritis Rheum. 56, 4203–4215 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Schwalm, S. et al. Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells. Biochem. Biophys. Res. Commun. 368, 1020–1025 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Park, S. Y. et al. Expression of MUC1, MUC2, MUC5AC and MUC6 in cholangiocarcinoma: prognostic impact. Oncol. Rep. 22, 649–657 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Aubert, S. et al. MUC1, a new hypoxia inducible factor target gene, in an actor in clear renal cell carcinoma tumor progression. Cancer Res. 69, 5707–5715 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Berman, D. M. et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Inaguma, S., Kasai, K. & Ikeda, H. GLI1 facilitates the migration and invasion of pancreatic cancer cells through MUC5AC-mediated attenuation of E-cadherin. Oncogene 30, 714–723 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Yang, L. et al. Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J. Hepatol. 48, 98–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Theunissen, J.-W. & de Sauvage, F. J. Paracrine hedgehog signaling in cancer. Cancer Res. 69, 6007–6010 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Choi, S. S. et al. Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G1093–G1106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sun, S. et al. Hypoxia-inducible factor-1α induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int. 75, 1278–1287 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Bechtel, W. & Zeisberg, M. Twist: a new link from hypoxia to fibrosis. Kidney Int. 75, 1255–1256 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Onishi, H. et al. Hypoxia activates the hedgehog signaling pathway in a ligand-independent manner by upregulation of Smo transcription in pancreatic cancer. Cancer Sci. 102, 1144–1150 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Jhandier, M. N., Kruglov, E. A., Lavoie, E. G., Sévigny, J. & Dranoff, J. A. Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of NTPDase2. J. Biol. Chem. 280, 22986–22992 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Okabe, H. et al. Hepatic stellate cells accelerate the malignant behavior of cholangiocarcinoma cells. Ann. Surg. Oncol. 18, 1175–1184 (2011).

    Article  PubMed  Google Scholar 

  116. Sirica, A. E., Campbell, D. J. & Dumur, C. I. Cancer-associated fibroblastic cells significantly promote cholangiocarcinoma cell ductal growth in a novel 3-D co-culture model [abstract]. Gastroenterology 140 (Suppl. 1), S909–S910 (2011).

    Article  Google Scholar 

  117. Lai, G.-H. et al. erbB-2/neu transformed rat cholangiocytes recapitulate key cellular and molecular features of human bile duct cancer. Gastroenterology 129, 2047–2057 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Sirica, A. E. et al. A novel “patient-like” model of cholangiocarcinoma progression based on bile duct inoculation of tumorigenic rat cholangiocyte cell lines. Hepatology 47, 1178–1190 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Blechacz, B. R. A. et al. Sorafenib inhibits signal transducer and activator of transcription-3 signaling in cholangiocarcinoma cells by activating the phosphatase shatterproof 2. Hepatology 50, 1861–1870 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, Z. et al. Preclinical assessment of simultaneous targeting of epidermal growth factor receptor (ERBB1) and ERBB2 as a strategy for cholangiocarcinoma therapy. Hepatology 52, 975–986 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Ramanathan, R. K. et al. A phase II study of lapatinib in patients with advanced biliary tree and hepatocellular cancer. Cancer Chemother. Pharmacol. 64, 777–783 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Nakamura, I. & Roberts, L. R. Myc, Max, and Mnt: molecular mechanisms of enhancement of cholangiocarcinogenesis by cholestasis. Gastroenterology 141, 32–34 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wiedmann, M. W. & Mössner, J. Molecular targeted therapy of biliary tract cancer—results of the first clinical studies. Curr. Drug Targets 11, 834–850 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Zhu, A. X. & Hezel, A. F. Development of molecularly targeted therapies in biliary tract cancers: reassessing the challenges and opportunities. Hepatology 53, 695–704 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Chometon, G. & Jendrossek, V. Targeting the tumour stroma to increase efficacy of chemo- and radiotherapy. Clin. Transl. Oncol. 11, 75–81 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Maeda, T. et al. Clinicopathological correlates of aspartyl (asparaginyl) β-hydroxylase over-expression in cholangiocarcinoma. Cancer Detect. Prev. 28, 313–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Naran, S., Zhang, X. & Hughes, S. J. Inhibition of HGF/MET as therapy for malignancy. Expert Opin. Ther. Targets 13, 569–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Underiner, T. L., Herbertz, T. & Miknyoczki, S. J. Discovery of small molecule c-Met inhibitors: evolution and profiles of clinical candidates. Anticancer Agents Med. Chem. 10, 7–27 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Zhang, Y.-W. et al. MET kinase inhibitor SGX523 synergizes with epidermal growth factor receptor inhibitor erlotinib in a hepatocyte growth factor-dependent fashion to suppress carcinoma growth. Cancer Res. 70, 6880–6890 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Liang, X. CXCR4, inhibitors and mechanisms of action. Chem. Biol. Drug Des. 72, 97–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Singh, B. et al. Evaluation of a CXCR4 antagonist in a xenograft mouse model of inflammatory breast cancer. Clin. Exp. Metastasis 27, 233–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Jinawath, A., Akiyama, Y., Sripa, B. & Yuasa, Y. Dual blockade of the Hedgehog and ERK1/2 pathways coordinately decreases proliferation and survival of cholangiocarcinoma cells. J. Cancer Res. Clin. Oncol. 133, 271–278 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Feldmann, G. et al. An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol. Cancer Ther. 7, 2725–2735 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Low, J. A. & de Sauvage, F. J. Clinical experience with Hedgehog pathway inhibitors. J. Clin. Oncol. 28, 5321–5326 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Holcombe, R. F., Gu, M., Imagawa, D. & Milovanovic, T. Expression of Kit and platelet-derived growth factor receptors α and β in cholangiocarcinoma, and case report of therapy with imatinib mesylate (STI571). Anticancer Drugs 14, 651–657 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Aoki, M. et al. Imatinib mesylate inhibits cell invasion of malignant peripheral nerve sheath tumor induced by platelet-derived growth factor-BB. Lab. Invest. 87, 767–779 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Shen, J. et al. Development of a fully human anti-PDGFRβ antibody that suppresses growth of human tumor xenofrafts and enhances antitumor activity of an anti-VEGFR2 antibody. Neoplasia 11, 594–604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Edman, K. et al. The discovery of MMP7 inhibitors exploiting a novel selectivity trigger. Chem. Med. Chem. 6, 769–773 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Dings, R. P. M. et al. Inhibiting tumor growth by targeting tumor vasculature with galectin-1 antagonist anginex conjugated to the cytotoxic acylfulvene, 6-hydroxylpropylacylfulvene. Bioconjugate Chem. 21, 20–27 (2010).

    Article  CAS  Google Scholar 

  141. Wu, M.-H. et al. Targeting galectin-1 in carcinoma-associated fibroblasts inhibits oral squamous cell carcinoma metastasis by downregulating MCP-1/CCL2 expression. Clin. Cancer Res. 17, 1306–1316 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Reardon, D. A., Zalutsky, M. R. & Bigner, D. D. Antitenascin-C monoclonal antibody radioimmunotherapy for malignant glioma patients. Expert Rev. Anticancer Ther. 7, 675–687 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Tai, I. T., Dai, M. & Chen, L. B. Periostin induction in tumor cell line explants and inhibition of in vitro cell growth by anti-periostin antibodies. Carcinogenesis 26, 908–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Rathinam, R. & Alahari, S. K. Important role of integrins in the cancer biology. Cancer Metastasis Rev. 29, 223–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kufe, D. W. Functional targeting of the MUC1 oncogene in human cancers. Cancer Biol. Ther. 8, 1197–1203 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhou, Y., Rajabi, H. & Kufe, D. Mucin 1 C-terminal subunit oncoprotein is a target for small molecule inhibitors. Mol. Pharmacol. 79, 886–893 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shida, D., Takabe, K., Kapitonov, D., Milstien, S. & Spiegel, S. Targeting SphK1 as a new strategy against cancer. Curr. Drug Targets 9, 662–673 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Maeda, T. et al. Antisense oligodeoxynucleotides directed against aspartyl (asparaginyl) β-hydroxylase suppress migration of carcinoma cells. J. Hepatol. 38, 615–622 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Edosada, C. Y. et al. Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity. J. Biol. Chem. 281, 7437–7444 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Santos, A. M., Jung, J., Aziz, N., Kissil, J. L. & Puré, E. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J. Clin. Invest. 119, 3613–3625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Loeffler, M., Krüger, J. A., Niethammer, A. G. & Reisfeld, R. A. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J. Clin. Invest. 116, 1955–1962 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wen, Y. et al. Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci. 101, 2325–2332 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Schwartz, D. L. et al. The selective hypoxia inducible factor-1 inhibitor PX-478 provides in vivo radiosensitization through tumor stromal effects. Mol. Cancer Ther. 8, 947–958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Semenza, G. L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29, 625–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Lin, L. et al. The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-β signaling. Oncogene 28, 961–972 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lin, L. et al. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res. 70, 2445–2454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Leelawat, K., Sakchinabut, S., Narong, S. & Wannaprasert, J. Detection of serum MMP-7 and MMP-9 in cholangiocarcinoma patients: evaluation of diagnostic accuracy. BMC Gastroenterol. 9, 30 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Leelawat, K., Narong, S., Wannaprasert, J. & Ratanashu-ek, T. Prospective study of MMP7 serum levels in the diagnosis of cholangiocarcinoma. World J. Gastroenterol. 16, 4697–4703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fujimoto, K. et al. Periostin, a matrix protein, has potential as a novel serodiagnostic marker for cholangiocarcinoma. Oncol. Rep. 25, 1211–1216 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A. E. Sirica's research work is supported by NIH grants R01 CA 83650 and R01 CA 39225.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirica, A. The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 9, 44–54 (2012). https://doi.org/10.1038/nrgastro.2011.222

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2011.222

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer