Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular circuits of solid tumors: prognostic and predictive tools for bedside use

Abstract

The explosion of knowledge in cancer biology in the past two decades has led to the identification of specific molecular circuits in solid tumors. These pathways reflect specific abnormalities thought to drive malignant progression. This knowledge has also generated a vast panel of cancer biomarkers although many of these biomarkers lack sufficient research and validation to be used in the clinic. This Review discusses relevant molecular prognostic and/or predictive biomarkers in the six leading tumors with the highest contribution to cancer mortality: breast, lung, colorectal, prostate, pancreatic and ovarian cancer. Each biomarker is described according to its associated clinicopathological presentation and specific associated molecular interactions. Despite only few biomarkers being currently implemented in clinical practice, a new generation of predictors is emerging that could modify the classic organ-based cancer classification (for example, defects in DNA repair, aberrant MAPK signaling and aberrant PI3K/Akt/mTOR signaling). The advent of high-throughput strategies will also probably substitute monobiomarker strategies.

Key Points

  • Key oncogenic events and dysfunctional pathways have been identified over the past few decades in solid tumors

  • Many molecular-targeted agents have recently been approved or are in advanced clinical development, and these therapeutic tools target specific molecular abnormalities in the tumor allowing 'tailored treatment strategies'

  • Despite huge efforts, very few biomarkers are used in daily practice; examples of biomarkers in clinical use include ER, PR, HER2, Oncotype Dx®, MammaPrint® (breast cancer), EGFR mutations (lung cancer) and KRAS mutations (colorectal cancer)

  • Nevertheless a new generation of novel biomarkers that will modify the organ-based classification of cancer is emerging—such as DNA repair dysfunctionality, MAPK signaling and the PI3K/Akt/mTOR axis

  • Researchers and clinical investigators should be particularly aware of methodological issues when they consider biomarkers for bedside use

  • High-throughput analyses are being implemented in most tumor types, and given the huge number of possible effectors and the complex intricate pathways, high-throughput-based analysis will probably supercede monobiomarker strategies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular biomarkers in breast cancer.
Figure 2: Molecular biomarkers in lung cancers.
Figure 3: Molecular biomarkers in colorectal cancers.
Figure 4
Figure 5
Figure 6: Molecular biomarkers in epithelial ovarian cancers.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, CA. Cancer J. Clin. 59, 225–249 (2009).

    Article  Google Scholar 

  2. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

  3. Harris, L. et al. American Society of Clinical Oncology update of recommendations for the use of tumor markers in breast cancer. J. Clin. Oncol. 25, 5287–5312 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Grann, V. R. et al. Hormone receptor status and survival in a population-based cohort of patients with breast carcinoma. Cancer 103, 2241–2251 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Dowsett, M. & Dunbier, A. K. Emerging biomarkers and new understanding of traditional markers in personalized therapy for breast cancer. Clin. Cancer Res. 14, 8019–8026 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Penault-Llorca, F. et al. Ki67 expression and docetaxel efficacy in patients with estrogen receptor-positive breast cancer. J. Clin. Oncol. 27, 2809–2815 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Urruticoechea, A., Smith, I. E. & Dowsett, M. Proliferation marker Ki-67 in early breast cancer. J. Clin. Oncol. 23, 7212–7220 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Look, M. P. et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J. Natl Cancer Inst. 94, 116–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Jänicke, F. et al. Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J. Natl Cancer Inst. 93, 913–920 (2001).

    Article  PubMed  Google Scholar 

  10. O'Malley, F. P. et al. Topoisomerase II alpha and responsiveness of breast cancer to adjuvant chemotherapy. J. Natl Cancer Inst. 101, 644–650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colozza, M. et al. Proliferative markers as prognostic and predictive tools in early breast cancer: where are we now? Ann. Oncol. 16, 1723–1739 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Harris, L. N. et al. Topoisomerase IIα amplification does not predict benefit from dose-intense cyclophosphamide, doxorubicin, and fluorouracil therapy in HER2-amplified early breast cancer: results of CALGB 8541/150013. J. Clin. Oncol. 27, 3430–3436 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Claus, E. B., Schildkraut, J. M., Thompson, W. D. & Risch, N. J. The genetic attributable risk of breast and ovarian cancer. Cancer 77, 2318–2324 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Rennert, G. et al. Clinical outcomes of breast cancer in carriers of BRCA1 and BRCA2 mutations. N. Engl. J. Med. 357, 115–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Byrski, T. et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J. Clin. Oncol. 28, 375–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Ellis, M. J. et al. Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Res. Treat. 119, 379–390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pérez-Tenorio, G. et al. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin. Cancer Res. 13, 3577–3584 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. Andre, F. & Delaloge, S. First-generation genomic tests for breast cancer treatment. Lancet Oncol. 11, 6–7 (2010).

    Article  PubMed  Google Scholar 

  19. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 31, 530–536 (2002).

    Article  Google Scholar 

  20. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Buyse, M. et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl Cancer Inst. 98, 1183–1192 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Desmedt, C., Ruíz-García, E. & André, F. Gene expression predictors in breast cancer: current status, limitations and perspectives. Eur. J. Cancer 44, 2714–2720 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Paik, S. et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3726–3734 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Albain, K. S. et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 11, 55–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Desmedt, C. et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin. Cancer Res. 13, 3207–3214 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Leary, A. F. et al. Value and limitations of measuring HER-2 extracellular domain in the serum of breast cancer patients. J. Clin. Oncol. 27, 1694–1705 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Lipton, A. et al. Elevated serum Her-2/neu level predicts decreased response to hormone therapy in metastatic breast cancer. J. Clin. Oncol. 20, 1467–1472 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Scaltriti, M. et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J. Natl Cancer Inst. 99, 628–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Scaltriti, M. et al. Clinical benefit of lapatinib-based therapy in patients with human epidermal growth factor receptor 2-positive breast tumors coexpressing the truncated p95HER2 receptor. Clin. Cancer Res. 16, 2688–2695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. André, F. et al. Multicenter phase I clinical trial of daily and weekly RAD001 in combination with weekly paclitaxel and trastuzumab in patients with HER2-overexpressing metastatic breast cancer with prior resistance to trastuzumab [abstract]. J. Clin. Oncol. 26 (Suppl.), a1003 (2008).

    Article  Google Scholar 

  31. Nahta, R., Yu, D., Hung, M. C., Hortobagyi, G. N. & Esteva, F. J. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat. Clin. Pract. Oncol. 3, 269–280 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. De Giorgi, U. et al. Circulating tumor cells and [18F]fluorodeoxyglucose positron emission tomography/computed tomography for outcome prediction in metastatic breast cancer. J. Clin. Oncol. 27, 3303–3311 (2009).

    Article  PubMed  Google Scholar 

  33. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Zheng, Z. et al. DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N. Engl. J. Med. 356, 800–808 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Olaussen, K. A. et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N. Engl. J. Med. 355, 983–991 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Potti, A. et al. A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N. Engl. J. Med. 355, 570–580 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Coate, L. E., John, T., Tsao, M. S. & Shepherd, F. A. Molecular predictive and prognostic markers in non-small-cell lung cancer. Lancet Oncol. 10, 1001–1010 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Sève, P., Reiman, T. & Dumont, C. The role of betaIII tubulin in predicting chemoresistance in non-small cell lung cancer. Lung Cancer 67, 136–143 (2010).

    Article  PubMed  Google Scholar 

  39. Chen, H. Y. et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N. Engl. J. Med. 356, 11–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, C. Q. et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J. Clin. Oncol. 26, 4268–4275 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Hirsch, F. R. et al. Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J. Clin. Oncol. 24, 5034–5042 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Varella-Garcia, M. et al. EGFR fluorescence in situ hybridisation assay: guidelines for application to non-small-cell lung cancer. J. Clin. Pathol. 62, 970–977 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Riely, G. J., Marks, J. & Pao, W. KRAS mutations in non-small cell lung cancer. Proc. Am. Thorac. Soc. 6, 201–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Linardou, H. et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 9, 962–972 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Gomez-Roca, C. et al. Differential expression of biomarkers in primary non-small cell lung cancer and metastatic sites. J. Thorac. Oncol. 4, 1212–1220 (2009).

    Article  PubMed  Google Scholar 

  46. Cobo, M. et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J. Clin. Oncol. 25, 2747–2754 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Rosell, R. et al. BRCA1: a novel prognostic factor in resected non-small-cell lung cancer. PLoS ONE 2, e1129 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Boukovinas, I. et al. Tumor BRCA1, RRM1 and RRM2 mRNA expression levels and clinical response to first-line gemcitabine plus docetaxel in non-small-cell lung cancer patients. PLoS ONE 3, e3695 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Shaw, A. T. et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J. Clin. Oncol. 27, 4247–4253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanchez-Cespedes, M. et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 62, 3659–3662 (2002).

    CAS  PubMed  Google Scholar 

  52. Koivunen, J. P. et al. Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients. Br. J. Cancer 99, 245–252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Markowitz, S. D. & Bertagnolli, M. M. Molecular origins of cancer: molecular basis of colorectal cancer. N. Engl. J. Med. 361, 2449–2460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Walther, A. et al. Genetic prognostic and predictive markers in colorectal cancer. Nat. Rev. Cancer 9, 489–499 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Y. et al. Gene expression profiles and molecular markers to predict recurrence of Dukes' B colon cancer. J. Clin. Oncol. 22, 1564–1571 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Garman, K. S. et al. A genomic approach to colon cancer risk stratification yields biologic insights into therapeutic opportunities. Proc. Natl Acad. Sci. USA 105, 19432–19437 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kopetz, S. & Abbruzzese, J. L. Barriers to integrating gene profiling for stage II colon cancer. Clin. Cancer Res. 15, 7451–7452 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Ribic, C. M. et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 349, 247–257 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Loriot, Y., Mordant, P., Deutsch, E., Olaussen, K. A. & Soria, J. C. Are RAS mutations predictive markers of resistance to standard chemotherapy? Nat. Rev. Clin. Oncol. 6, 528–534 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Eberhard, D. A. et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. 23, 5900–5909 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Roth, A. D. et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60–00 trial. J. Clin. Oncol. 28, 466–474 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Spano, J. P. et al. Epidermal growth factor receptor signaling in colorectal cancer: preclinical data and therapeutic perspectives. Ann. Oncol. 16, 189–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Tol, J., Nagtegaal, I. D. & Punt, C. J. BRAF mutation in metastatic colorectal cancer. N. Engl. J. Med. 361, 98–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Ogino, S. et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut 58, 90–96 (2009).

    Article  PubMed  Google Scholar 

  66. Samowitz, W. S. et al. Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. J. Natl Cancer Inst. 98, 1731–1738 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Slattery, M. L. et al. Diet and lifestyle factor associations with CpG island methylator phenotype and BRAF mutations in colon cancer. Int. J. Cancer 120, 656–663 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Iacopetta, B. et al. Functional categories of TP53 mutation in colorectal cancer: results of an International Collaborative Study. Ann. Oncol. 17, 842–847 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Ogino, S. et al. Prognostic significance and molecular associations of 18q loss of heterozygosity: a cohort study of microsatellite stable colorectal cancers. J. Clin. Oncol. 27, 4591–4598 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Witte, J. S. Prostate cancer genomics: towards a new understanding. Nat. Rev. Genet. 10, 77–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Kattan, M. W., Wheeler, T. M. & Scardino, P. T. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J. Clin. Oncol. 17, 1499–1507 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Cooperberg, M. R., Broering, J. M. & Carroll, P. R. Risk assessment for prostate cancer metastasis and mortality at the time of diagnosis. J. Natl Cancer Inst. 101, 878–887 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Stephenson, A. J. et al. Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J. Clin. Oncol. 23, 7005–7012 (2005).

    Article  PubMed  Google Scholar 

  74. Zong, Y. et al. ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc. Natl Acad. Sci. USA 106, 12465–12470 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kumar-Sinha, C., Tomlins, S. A. & Chinnaiyan, A. M. Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer 8, 497–511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mosquera, J. M. et al. Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States. Clin. Cancer Res. 15, 4706–4711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yoshimoto, M. et al. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod. Pathol. 21, 1451–1460 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Carver, B. S. et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat. Genet. 41, 619–624 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Squire, J. A. TMPRSS2-ERG and PTEN loss in prostate cancer. Nat. Genet. 41, 509–510 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Febbo, P. G. Genomic approaches to outcome prediction in prostate cancer. Cancer 115 (Suppl. 13), 3046–3057 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Rosenbaum, E. et al. Promoter hypermethylation as an independent prognostic factor for relapse in patients with prostate cancer following radical prostatectomy. Clin. Cancer Res. 11, 8321–8325 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Richiardi, L. et al. Promoter methylation in, APC, RUNX3, and GSTP1 and mortality in prostate cancer patients. J. Clin. Oncol. 27, 3161–3168 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Taplin, M. E. et al. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J. Clin. Oncol. 21, 2673–2678 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Kattan, M. W. et al. The addition of interleukin-6 soluble receptor and transforming growth factor beta1 improves a preoperative nomogram for predicting biochemical progression in patients with clinically localized prostate cancer. J. Clin. Oncol. 21, 3573–3579 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Lopergolo, A. & Zaffaroni, N. Biomolecular markers of outcome prediction in prostate cancer. Cancer 115 (Suppl. 13), 3058–3067 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Rhodes, D. R., Sanda, M. G., Otte, A. P., Chinnaiyan, A. M. & Rubin, M. A. Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer. J. Natl Cancer Inst. 95, 661–668 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Khor, L. Y. et al. MDM2 as a predictor of prostate carcinoma outcome: an analysis of Radiation Therapy Oncology Group Protocol 8610. Cancer 104, 962–967 (2005).

    Article  PubMed  Google Scholar 

  89. Grignon, D. J. et al. p53 status and prognosis of locally advanced prostatic adenocarcinoma: a study based on RTOG 8610. J. Natl Cancer Inst. 89, 158–165 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Chakravarti, A. et al. Prognostic value of p16 in locally advanced prostate cancer: a study based on Radiation Therapy Oncology Group Protocol 9202. J. Clin. Oncol. 25, 3082–3089 (2007).

    Article  PubMed  Google Scholar 

  91. Edwards, J. et al. The role of HER1-HER4 and EGFRvIII in hormone-refractory prostate cancer. Clin. Cancer Res. 12, 123–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Lara, P. N. Jr et al. Trastuzumab plus docetaxel in HER-2/neu-positive prostate carcinoma: final results from the California Cancer Consortium Screening and Phase II Trial. Cancer 100, 2125–2131 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Domingo-Domenech, J. et al. Serum HER2 extracellular domain predicts an aggressive clinical outcome and biological PSA response in hormone-independent prostate cancer patients treated with docetaxel. Ann. Oncol. 19, 269–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Sircar, K. et al. PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. J. Pathol. 218, 505–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Nakagawa, T. et al. A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy. PLoS ONE 3, e2318 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Rajpar, S. et al. Urinary N-telopeptide (uNTx) is an independent prognostic factor for overall survival in patients with bone metastases from castration-resistant prostate cancer. Ann. Oncol. doi:10.1093/annonc/mdq037.

    Article  CAS  PubMed  Google Scholar 

  97. Fizazi, K. et al. Phase II trial of consolidation docetaxel and samarium-153 in patients with bone metastases from castration-resistant prostate cancer. J. Clin. Oncol. 27, 2429–2435 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. de Bono, J. S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Hruban, R. H. & Adsay, N. V. Molecular classification of neoplasms of the pancreas. Hum. Pathol. 40, 612–623 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Iacobuzio-Donahue, C. A. et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J. Clin. Oncol. 27, 1806–1813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Blackford, A. et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin. Cancer Res. 15, 4674–4679 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lubin, M. & Lubin, A. Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy. PLoS ONE 4, e5735 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Watanabe, I. et al. Advanced pancreatic ductal cancer: fibrotic focus and beta-catenin expression correlate with outcome. Pancreas 26, 326–333 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Kurman, R. J. & Shih, I. M. Pathogenesis of ovarian cancer: lessons from morphology and molecular biology and their clinical implications. Int. J. Gynecol. Pathol. 27, 151–160 (2008).

    PubMed  PubMed Central  Google Scholar 

  105. Bast, R. C. Jr, Hennessy, B. & Mills, G. B. The biology of ovarian cancer: new opportunities for translation. Nat. Rev. Cancer 9, 415–428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Auner, V. et al. KRAS mutation analysis in ovarian samples using a high sensitivity biochip assay. BMC Cancer 9, 111 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Singer, G. et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J. Natl Cancer Inst. 95, 484–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Willner, J. et al. Alternate molecular genetic pathways in ovarian carcinomas of common histological types. Hum. Pathol. 38, 607–613 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Gamallo, C. et al. Beta-catenin expression pattern in stage I and II ovarian carcinomas: relationship with beta-catenin gene mutations, clinicopathological features, and clinical outcome. Am. J. Pathol. 155, 527–536 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Madore, J. et al. Characterization of the molecular differences between ovarian endometrioid carcinoma and ovarian serous carcinoma. J. Pathol. 220, 392–400 (2010).

    Article  PubMed  Google Scholar 

  111. Kolasa, I. K. et al. PIK3CA amplification associates with resistance to chemotherapy in ovarian cancer patients. Cancer Biol. Ther. 8, 21–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Helleman, J. et al. Mismatch repair and treatment resistance in ovarian cancer. BMC Cancer 6, 201 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. de Graeff, P. et al. Factors influencing p53 expression in ovarian cancer as a biomarker of clinical outcome in multicentre studies. Br. J. Cancer 95, 627–633 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Boyd, J. et al. Clinicopathologic features of BRCA-linked and sporadic ovarian cancer. JAMA 283, 2260–2265 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Tan, D. S. et al. “BRCAness” syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J. Clin. Oncol. 26, 5530–5536 (2008).

    Article  PubMed  Google Scholar 

  116. Lim, S. L. et al. Promoter hypermethylation of FANCF and outcome in advanced ovarian cancer. Br. J. Cancer 98, 1452–1456 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Potapova, A., Hoffman, A. M., Godwin, A. K., Al-Saleem, T. & Cairns, P. Promoter hypermethylation of the PALB2 susceptibility gene in inherited and sporadic breast and ovarian cancer. Cancer Res. 68, 998–1002 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Hayes, D. F. et al. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J. Natl Cancer Inst. 88, 1456–1466 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. McShane, L. M. et al. REporting recommendations for tumour MARKer prognostic studies (REMARK). Nat. Clin. Pract. Oncol. 2, 416–422 (2005).

    CAS  PubMed  Google Scholar 

  121. Henry, N. L. & Hayes, D. F. Uses and abuses of tumor markers in the diagnosis, monitoring, and treatment of primary and metastatic breast cancer. Oncologist 11, 541–552 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Subramanian, J. & Simon, R. What should physicians look for in evaluating prognostic gene-expression signatures? Nat. Rev. Clin. Oncol. 7, 327–334 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank C. Verjat for preparation of the figures, and C. Massard for useful comments and discussions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Soria.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferté, C., André, F. & Soria, JC. Molecular circuits of solid tumors: prognostic and predictive tools for bedside use. Nat Rev Clin Oncol 7, 367–380 (2010). https://doi.org/10.1038/nrclinonc.2010.84

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.84

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer