Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Minimally invasive paediatric cardiac surgery

Key Points

  • Minimally invasive surgery for congenital heart disease in paediatric patients is a broad concept; the aim is to reduce the trauma of the operation at each stage of management

  • Minimally invasive incisions produce better cosmetic results, and reduce rehabilitation time and pain when compared with traditional open heart surgery

  • Minimally invasive incisions and cardiopulmonary bypass strategies, video-assisted thoracoscopic surgery, robotically assisted surgery, hybrid procedures, and image-guided intracardiac surgery have been developed

  • Improvement of these minimally invasive strategies relies on the development of new devices, real-time multimodality imaging, and aids to instrument navigation

  • Reducing global trauma and morbidity related to surgery requires a multidisciplinary co-ordinated approach involving congenital cardiac surgeons, perfusionists, anaesthesiologists, intensivists, cardiologists, and nurses

  • The goal of the team dedicated to minimally invasive paediatric cardiac surgery is to go beyond technological and medical limitations to 'treat more while hurting less'

Abstract

The concept of minimally invasive surgery for congenital heart disease in paediatric patients is broad, and has the aim of reducing the trauma of the operation at each stage of management. Firstly, in the operating room using minimally invasive incisions, video-assisted thoracoscopic and robotically assisted surgery, hybrid procedures, image-guided intracardiac surgery, and minimally invasive cardiopulmonary bypass strategies. Secondly, in the intensive-care unit with neuroprotection and 'fast-tracking' strategies that involve early extubation, early hospital discharge, and less exposure to transfused blood products. Thirdly, during postoperative mid-term and long-term follow-up by providing the children and their families with adequate support after hospital discharge. Improvement of these strategies relies on the development of new devices, real-time multimodality imaging, aids to instrument navigation, miniaturized and specialized instrumentation, robotic technology, and computer-assisted modelling of flow dynamics and tissue mechanics. In addition, dedicated multidisciplinary co-ordinated teams involving congenital cardiac surgeons, perfusionists, intensivists, anaesthesiologists, cardiologists, nurses, psychologists, and counsellors are needed before, during, and after surgery to go beyond apparent technological and medical limitations with the goal to 'treat more while hurting less'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The lower partial (or 'mini') sternotomy.
Figure 2: A right submammary incision (also called right anterolateral thoracotomy).
Figure 3
Figure 4: Video-assisted thoracoscopic surgery.
Figure 5: The hybrid stage I procedure for hypoplastic left heart syndrome.
Figure 6: Development of retrograde coarctation (white arrow) in a 3-month-old patient after a hybrid stage I procedure.
Figure 7
Figure 8: Perventricular closure of a complex mid-muscular ventricular septal defect.

Similar content being viewed by others

References

  1. Black, M. D. & Freedom, R. M. Minimally invasive repair of atrial septal defects. Ann. Thorac. Surg. 65, 765–767 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Del Nido, P. J. & Bichell, D. P. Minimal-access surgery for congenital heart defects. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 1, 75–80 (1998).

    Article  PubMed  Google Scholar 

  3. Kadner, A. et al. Inferior partial sternotomy for surgical closure of isolated ventricular septal defects in children. Heart Surg. Forum 7, E467–E470 (2004).

    Article  PubMed  Google Scholar 

  4. Gundry, S. R. et al. Facile minimally invasive cardiac surgery via ministernotomy. Ann. Thorac. Surg. 65, 1100–1104 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Ono, M. et al. The clinical pathway for fast track recovery of school activities in children after minimally invasive cardiac surgery. Cardiol. Young 13, 44–48 (2003).

    Article  PubMed  Google Scholar 

  6. Hagl, C., Stock, U., Haverich, A. & Steinhoff, G. Evaluation of different minimally invasive techniques in pediatric cardiac surgery: is a full sternotomy always a necessity? Chest 119, 622–627 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Mavroudis, C., Backer, C. L., Stewart, R. D. & Heraty, P. The case against minimally invasive cardiac surgery. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 8, 193–197 (2005).

    Article  Google Scholar 

  8. Williams, P. H., Bhatnagar, N. K. & Wisheart, J. D. Compartment syndrome in a five-year-old child following femoral cannulation for cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 3, 474–475 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Vida, V. L. et al. Minimally invasive operation for congenital heart disease: a sex-differentiated approach. J. Thorac. Cardiovasc. Surg. 138, 933–936 (2009).

    Article  PubMed  Google Scholar 

  10. Vida, V. L., Padalino, M. A., Motta, R. & Stellin, G. Minimally invasive surgical options in pediatric heart surgery. Expert Rev. Cardiovasc. Ther. 9, 763–769 (2011).

    Article  PubMed  Google Scholar 

  11. Abdel-Rahman, U. et al. Correction of simple congenital heart defects in infants and children through a minithoracotomy. Ann. Thorac. Surg. 72, 1645–1649 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Mishaly, D., Ghosh, P. & Preisman, S. Minimally invasive congenital cardiac surgery through right anterior minithoracotomy approach. Ann. Thorac. Surg. 85, 831–835 (2008).

    Article  PubMed  Google Scholar 

  13. Yang, X., Wang, D. & Wu, Q. Repair of partial atrioventricular septal defect through a minimal right vertical infra-axillary thoracotomy. J. Card. Surg. 18, 262–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Houyel, L. et al. Right postero-lateral thoracotomy for open heart surgery in infants and children. Indications and results. [French] Arch. Mal. Coeur Vaiss. 92, 641–646 (1999).

    CAS  PubMed  Google Scholar 

  15. Nguyen, K. et al. The axillary incision: a cosmetic approach in congenital cardiac surgery. J. Thorac. Cardiovasc. Surg. 134, 1358–1360 (2007).

    Article  PubMed  Google Scholar 

  16. Iribarne, A. et al. Comparative effectiveness of minimally invasive versus traditional sternotomy mitral valve surgery in elderly patients. J. Thorac. Cardiovasc. Surg. 143, S86–S90 (2012).

    Article  PubMed  Google Scholar 

  17. Vida, V. L. et al. The evolution of the right anterolateral thoracotomy technique for correction of atrial septal defects: cosmetic and functional results in prepubescent patients. Ann. Thorac. Surg. 95, 242–247 (2013).

    Article  PubMed  Google Scholar 

  18. Soukiasian, H. J. & Fontana, G. P. Surgeons should provide minimally invasive approaches for the treatment of congenital heart disease. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 8, 185–192 (2005).

    Article  Google Scholar 

  19. Dajczman, E., Gordon, A., Kreisman, H. & Wolkove, N. Long-term postthoracotomy pain. Chest 99, 270–274 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Westfelt, J. N. & Nordwall, A. Thoracotomy and scoliosis. Spine (Phila. Pa. 1976) 16, 1124–1125 (1991).

    Article  CAS  Google Scholar 

  21. Laborde, F. et al. A new video-assisted thoracoscopic surgical technique for interruption of patient ductus arteriosus in infants and children. J. Thorac. Cardiovasc. Surg. 105, 278–280 (1993).

    CAS  PubMed  Google Scholar 

  22. Villa, E., Vanden Eynden, F., Le Bret, E., Folliguet, T. & Laborde, F. Paediatric video-assisted thoracoscopic clipping of patent ductus arteriosus: experience in more than 700 cases. Eur. J. Cardiothorac. Surg. 25, 387–393 (2004).

    Article  PubMed  Google Scholar 

  23. Burke, R. P., Jacobs, J. P., Cheng, W., Trento, A. & Fontana, G. P. Video-assisted thoracoscopic surgery for patent ductus arteriosus in low birth weight neonates and infants. Pediatrics 104, 227–230 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Hines, M. H. et al. Video-assisted ductal ligation in premature infants. Ann. Thorac. Surg. 76, 1417–1420 (2003).

    Article  PubMed  Google Scholar 

  25. Nezafati, M. H., Soltani, G. & Kahrom, M. Video-assisted thoracoscopic patent ductus arteriosus closure without tube thoracostomy. Ann. Thorac. Surg. 91, 1651 (2011).

    Article  PubMed  Google Scholar 

  26. Bensky, A. S., Raines, K. H. & Hines, M. H. Late follow-up after thoracoscopic ductal ligation. Am. J. Cardiol. 86, 360–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Jacobs, J. P. et al. The modern approach to patent ductus arteriosus treatment: complementary roles of video-assisted thoracoscopic surgery and interventional cardiology coil occlusion. Ann. Thorac. Surg. 76, 1421–1427 (2003).

    Article  PubMed  Google Scholar 

  28. Giroud, J. M. & Jacobs, J. P. Evolution of strategies for management of the patent arterial duct. Cardiol. Young 17(Suppl. 2), 68–74 (2007).

    Article  PubMed  Google Scholar 

  29. Burke, R. P., Rosenfeld, H. M., Wernovsky, G. & Jonas, R. A. Video-assisted thoracoscopic vascular ring division in infants and children. J. Am. Coll. Cardiol. 25, 943–947 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Burke, R. P. & Chang, A. C. Video-assisted thoracoscopic division of a vascular ring in an infant: a new operative technique. J. Card. Surg. 8, 537–540 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Payne, R. M., Bensky, A. S. & Hines, M. H. Division of venous collateral after Glenn shunt by minimally invasive surgery. Ann. Thorac. Surg. 70, 973–975 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Hines, M. H. Video-assisted diaphragm plication in children. Ann. Thorac. Surg. 76, 234–236 (2003).

    Article  PubMed  Google Scholar 

  33. Yao, D. K., Chen, H., Ma, L. L., Ma, Z. S. & Wang, L. X. Totally endoscopic atrial septal repair with or without robotic assistance: a systematic review and meta-analysis of case series. Heart Lung Circ. 22, 433–440 (2013).

    Article  PubMed  Google Scholar 

  34. Vistarini, N. et al. Port-access minimally invasive surgery for atrial septal defects: a 10-year single-center experience in 166 patients. J. Thorac. Cardiovasc. Surg. 139, 139–145 (2010).

    Article  PubMed  Google Scholar 

  35. Ma, Z. S., Dong, M. F., Yin, Q. Y., Feng, Z. Y. & Wang, L. X. Totally thoracoscopic repair of atrial septal defect without robotic assistance: a single-center experience. J. Thorac. Cardiovasc. Surg. 141, 1380–1383 (2011).

    Article  PubMed  Google Scholar 

  36. Liu, G. et al. Totally thoracoscopic surgery for the treatment of atrial septal defect without of the robotic Da Vinci surgical system. J. Cardiothorac. Surg. 8, 119 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, G. et al. Totally thoracoscopic surgical treatment for atrial septal defect: mid-term follow-up results in 45 consecutive patients. Heart Lung Circ. http://dx.doi.org/10.1016/j.hlc.2012.09.007.

  38. Wang, F. et al. Totally thoracoscopic surgical closure of atrial septal defect in small children. Ann. Thorac. Surg. 92, 200–203 (2011).

    Article  PubMed  Google Scholar 

  39. Ma, Z. S., Dong, M. F., Yin, Q. Y., Feng, Z. Y. & Wang, L. X. Totally thoracoscopic closure for atrial septal defect on perfused beating hearts. Eur. J. Cardiothorac. Surg. 41, 1316–1319 (2012).

    Article  PubMed  Google Scholar 

  40. Ma, Z. S., Dong, M. F., Yin, Q. Y., Feng, Z. Y. & Wang, L. X. Totally thoracoscopic repair of ventricular septal defect: a short-term clinical observation on safety and feasibility. J. Thorac. Cardiovasc. Surg. 142, 850–854 (2011).

    Article  PubMed  Google Scholar 

  41. Ma, Z. S., Wang, J. T., Dong, M. F., Chai, S. D. & Wang, L. X. Thoracoscopic closure of ventricular septal defect in young children: technical challenges and solutions. Eur. J. Cardiothorac. Surg. 42, 976–979 (2012).

    Article  PubMed  Google Scholar 

  42. Dong, M. F. et al. Impact of peripherally established cardiopulmonary bypass on regional and systemic blood lactate levels. Heart Lung Circ. 21, 154–158 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Rao, V., Freedom, R. M. & Black, M. D. Minimally invasive surgery with cardioscopy for congenital heart defects. Ann. Thorac. Surg. 68, 1742–1745 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Suematsu, Y. & del Nido, P. J. Robotic pediatric cardiac surgery: present and future perspectives. Am. J. Surg. 188, 98S–103S (2004).

    Article  PubMed  Google Scholar 

  45. Moorthy, K. et al. Dexterity enhancement with robotic surgery. Surg. Endosc. 18, 790–795 (2004).

    CAS  PubMed  Google Scholar 

  46. Burke, R. P. & Hannan, R. L. Reducing the trauma of congenital heart surgery. Surg. Clin. North Am. 80, 1593–1605 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Le Bret, E. et al. Interruption of patent ductus arteriosus in children: robotically assisted versus videothoracoscopic surgery. J. Thorac. Cardiovasc. Surg. 123, 973–976 (2002).

    Article  PubMed  Google Scholar 

  48. Mihaljevic, T., Cannon, J. W. & del Nido, P. J. Robotically assisted division of a vascular ring in children. J. Thorac. Cardiovasc. Surg. 125, 1163–1164 (2003).

    Article  PubMed  Google Scholar 

  49. Bonaros, N. et al. Robotically assisted totally endoscopic atrial septal defect repair: insights from operative times, learning curves, and clinical outcome. Ann. Thorac. Surg. 82, 687–693 (2006).

    Article  PubMed  Google Scholar 

  50. Gao, C., Yang, M., Wang, G. & Wang, J. Totally robotic resection of myxoma and atrial septal defect repair. Interact. Cardiovasc. Thorac. Surg. 7, 947–950 (2008).

    Article  PubMed  Google Scholar 

  51. Bacha, E. A., Bolotin, G., Consilio, K., Raman, J. & Ruschhaupt, D. G. Robotically assisted repair of sinus venosus defect. J. Thorac. Cardiovasc. Surg. 129, 442–443 (2005).

    Article  PubMed  Google Scholar 

  52. Kim, J. E. et al. Surgical outcomes of congenital atrial septal defect using Da Vinci surgical robot system. Korean J. Thorac. Cardiovasc. Surg. 46, 93–97 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sogawa, M. et al. Development of an endocardioscope for repair of an atrial septal defect in the beating heart. ASAIO J. 45, 90–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Warinsirikul, W., Sangchote, S., Mokarapong, P., Chaiyodsilp, S. & Tanamai, S. Closure of atrial septal defects without cardiopulmonary bypass: the sandwich operation. J. Thorac. Cardiovasc. Surg. 121, 1122–1129 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Amin, Z., Danford, D. A., Lof, J., Duncan, K. F. & Froemming, S. Intraoperative device closure of perimembranous ventricular septal defects without cardiopulmonary bypass: preliminary results with the perventricular technique. J. Thorac. Cardiovasc. Surg. 127, 234–241 (2004).

    Article  PubMed  Google Scholar 

  56. Downing, S. W., Herzog, W. A. Jr, McLaughlin, J. S. & Gilbert, T. P. Beating-heart mitral valve surgery: preliminary model and methodology. J. Thorac. Cardiovasc. Surg. 123, 1141–1146 (2002).

    Article  PubMed  Google Scholar 

  57. Suematsu, Y. et al. Beating atrial septal defect closure monitored by epicardial real-time three-dimensional echocardiography without cardiopulmonary bypass. Circulation 107, 785–790 (2003).

    Article  PubMed  Google Scholar 

  58. Suematsu, Y. et al. Three-dimensional echocardiography-guided beating-heart surgery without cardiopulmonary bypass: a feasibility study. J. Thorac. Cardiovasc. Surg. 128, 579–587 (2004).

    Article  PubMed  Google Scholar 

  59. Smeets, J. L., Ben-Haim, S. A., Rodriguez, L. M., Timmermans, C. & Wellens, H. J. New method for nonfluoroscopic endocardial mapping in humans: accuracy assessment and first clinical results. Circulation 97, 2426–2432 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Bacha, E. A., Marshall, A. C., McElhinney, D. B. & del Nido, P. J. Expanding the hybrid concept in congenital heart surgery. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 10, 146–150 (2007).

    Article  Google Scholar 

  61. Galantowicz, M. & Cheatham, J. P. Lessons learned from the development of a new hybrid strategy for the management of hypoplastic left heart syndrome. Pediatr. Cardiol. 26, 190–199 (2005).

    Article  PubMed  Google Scholar 

  62. Bacha, E. A. et al. Single-ventricle palliation for high-risk neonates: the emergence of an alternative hybrid stage I strategy. J. Thorac. Cardiovasc. Surg. 131, 163–171.e2 (2006).

    Article  PubMed  Google Scholar 

  63. DiBardino, D. J., McElhinney, D. B., Marshall, A. C. & Bacha, E. A. A review of ductal stenting in hypoplastic left heart syndrome: bridge to transplantation and hybrid stage I palliation. Pediatr. Cardiol. 29, 251–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Hasegawa, T., Yamaguchi, M., Yoshimura, N. & Okita, Y. The dependence of myocardial damage on age and ischemic time in pediatric cardiac surgery. J. Thorac. Cardiovasc. Surg. 129, 192–198 (2005).

    Article  PubMed  Google Scholar 

  65. Karimi, M. et al. Neonatal vulnerability to ischemia and reperfusion: Cardioplegic arrest causes greater myocardial apoptosis in neonatal lambs than in mature lambs. J. Thorac. Cardiovasc. Surg. 127, 490–497 (2004).

    Article  PubMed  Google Scholar 

  66. Akinturk, H. et al. Hybrid transcatheter-surgical palliation: basis for univentricular or biventricular repair: the Giessen experience. Pediatr. Cardiol. 28, 79–87 (2007).

    Article  PubMed  Google Scholar 

  67. Caldarone, C. A., Benson, L. N., Holtby, H. & Van Arsdell, G. S. Main pulmonary artery to innominate artery shunt during hybrid palliation of hypoplastic left heart syndrome. J. Thorac. Cardiovasc. Surg. 130, e1–e2 (2005).

    Article  PubMed  Google Scholar 

  68. Stoica, S. C. et al. The retrograde aortic arch in the hybrid approach to hypoplastic left heart syndrome. Ann. Thorac. Surg. 88, 1939–1946 (2009).

    Article  PubMed  Google Scholar 

  69. Baba, K. et al. Hybrid versus Norwood strategies for single-ventricle palliation. Circulation 126, S123–S131 (2012).

    Article  PubMed  Google Scholar 

  70. Licht, D. J. et al. Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects. J. Thorac. Cardiovasc. Surg. 128, 841–849 (2004).

    Article  PubMed  Google Scholar 

  71. Chen, Q. & Parry, A. J. The current role of hybrid procedures in the stage 1 palliation of patients with hypoplastic left heart syndrome. Eur. J. Cardiothorac. Surg. 36, 77–83 (2009).

    Article  PubMed  Google Scholar 

  72. Mitropoulos, F. A. et al. Intraoperative pulmonary artery stenting: an alternative technique for the management of pulmonary artery stenosis. Ann. Thorac. Surg. 84, 1338–1341 (2007).

    Article  PubMed  Google Scholar 

  73. Schreiber, C. et al. Implantation of a prosthesis mounted inside a self-expandable stent in the pulmonary valvar area without use of cardiopulmonary bypass. Ann. Thorac. Surg. 81, e1–e3 (2006).

    Article  PubMed  Google Scholar 

  74. Burke, R. P. Video-assisted endoscopy for congenital heart repair. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 4, 208–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Contrafouris, C. A. et al. Hybrid procedures for complex congenital cardiac lesions. Heart Surg. Forum 12, E155–E157 (2009).

    Article  PubMed  Google Scholar 

  76. Vida, V. L. et al. The balloon dilation of the pulmonary valve during early repair of tetralogy of Fallot. Catheter Cardiovasc. Interv. 80, 915–921 (2012).

    Article  PubMed  Google Scholar 

  77. Butera, G., Carminati, M. & Pome, G. Use of cutting-balloon angioplasty in a hybrid setting: a new application of the hybrid approach. J. Invasive Cardiol. 20, E327–E328 (2008).

    PubMed  Google Scholar 

  78. Holzer, R. J. et al. “Hybrid” stent delivery in the pulmonary circulation. J. Invasive Cardiol. 20, 592–598 (2008).

    PubMed  Google Scholar 

  79. Zhou, J. Q., Corno, A. F., Huber, C. H., Tozzi, P. & von Segesser, L. K. Self-expandable valved stent of large size: off-bypass implantation in pulmonary position. Eur. J. Cardiothorac. Surg. 24, 212–216 (2003).

    Article  PubMed  Google Scholar 

  80. Berdat, P. A. & Carrel, T. Off-pump pulmonary valve replacement with the new Shelhigh injectable stented pulmonic valve. J. Thorac. Cardiovasc. Surg. 131, 1192–1193 (2006).

    Article  PubMed  Google Scholar 

  81. Dittrich, S. et al. Hybrid pulmonary valve implantation: injection of a self-expanding tissue valve through the main pulmonary artery. Ann. Thorac. Surg. 85, 632–634 (2008).

    Article  PubMed  Google Scholar 

  82. Robinson, J. D. et al. The evolving role of intraoperative balloon pulmonary valvuloplasty in valve-sparing repair of tetralogy of Fallot. J. Thorac. Cardiovasc. Surg. 142, 1367–1373 (2011).

    Article  PubMed  Google Scholar 

  83. Bacha, E. Valve-sparing options in tetralogy of Fallot surgery. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 15, 24–26 (2012).

    Article  PubMed  Google Scholar 

  84. Burke, R. P., Hannan, R. L., Zabinsky, J. A., Tirotta, C. F. & Zahn, E. M. Hybrid ventricular decompression in pulmonary atresia with intact septum. Ann. Thorac. Surg. 88, 688–689 (2009).

    Article  PubMed  Google Scholar 

  85. Bacha, E. A. & Hijazi, Z. M. Hybrid procedures in pediatric cardiac surgery. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 8, 78–85 (2005).

    Article  Google Scholar 

  86. Bacha, E. A. et al. Perventricular device closure of muscular ventricular septal defects on the beating heart: technique and results. J. Thorac. Cardiovasc. Surg. 126, 1718–1723 (2003).

    Article  PubMed  Google Scholar 

  87. Diab, K. A., Hijazi, Z. M., Cao, Q. L. & Bacha, E. A. A truly hybrid approach to perventricular closure of multiple muscular ventricular septal defects. J. Thorac. Cardiovasc. Surg. 130, 892–893 (2005).

    Article  PubMed  Google Scholar 

  88. Bacha, E. A. et al. Hybrid pediatric cardiac surgery. Pediatr. Cardiol. 26, 315–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Schmitz, C. et al. Hybrid procedures can reduce the risk of congenital cardiovascular surgery. Eur. J. Cardiothorac. Surg. 34, 718–725 (2008).

    Article  PubMed  Google Scholar 

  90. Shuhaiber, J. H. et al. Intraoperative assessment after pediatric cardiac surgical repair: initial experience with C-arm angiography. J. Thorac. Cardiovasc. Surg. 140, e1–e3 (2010).

    Article  PubMed  Google Scholar 

  91. Shuhaiber, J., Rehman, M., Jenkins, K., Fynn-Thompson, F. & Bacha, E. The role of surgical therapy for pulmonary vein atresia in childhood. Pediatr. Cardiol. 32, 639–645 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Cannon, J. W. et al. Real-time three-dimensional ultrasound for guiding surgical tasks. Comput. Aided Surg. 8, 82–90 (2003).

    Article  PubMed  Google Scholar 

  93. Koenig, P. R., Abdulla, R. I., Cao, Q. L. & Hijazi, Z. M. Use of intracardiac echocardiography to guide catheter closure of atrial communications. Echocardiography 20, 781–787 (2003).

    Article  PubMed  Google Scholar 

  94. Xu, Z. et al. Controlled ultrasound tissue erosion. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 726–736 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Riviere, C. N., Patronik, N. A. & Zenati, M. A. Prototype epicardial crawling device for intrapericardial intervention on the beating heart. Heart Surg. Forum 7, E639–E643 (2004).

    Article  PubMed  Google Scholar 

  96. Karamlou, T., Hickey, E., Silliman, C. C., Shen, I. & Ungerleider, R. M. Reducing risk in infant cardiopulmonary bypass: the use of a miniaturized circuit and a crystalloid prime improves cardiopulmonary function and increases cerebral blood flow. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 8, 3–11 (2005).

    Article  Google Scholar 

  97. Andropoulos, D. B., Brady, K. M., Easley, R. B. & Fraser, C. D. Jr. Neuroprotection in pediatric cardiac surgery: what is on the horizon? Prog. Pediatr. Cardiol. 29, 113–122 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Goldberg, C. S. et al. A randomized clinical trial of regional cerebral perfusion versus deep hypothermic circulatory arrest: outcomes for infants with functional single ventricle. J. Thorac. Cardiovasc. Surg. 133, 880–887 (2007).

    Article  PubMed  Google Scholar 

  99. Austin, E. H. 3rd et al. Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J. Thorac. Cardiovasc. Surg. 114, 707–715 (1997).

    Article  PubMed  Google Scholar 

  100. Sato, K., Kimura, T., Nishikawa, T., Tobe, Y. & Masaki, Y. Neuroprotective effects of a combination of dexmedetomidine and hypothermia after incomplete cerebral ischemia in rats. Acta Anaesthesiol. Scand. 54, 377–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Kharbanda, R. K., Nielsen, T. T. & Redington, A. N. Translation of remote ischaemic preconditioning into clinical practice. Lancet 374, 1557–1565 (2009).

    Article  PubMed  Google Scholar 

  102. Ferriero, D. M. Neonatal brain injury. N. Engl. J. Med. 351, 1985–1995 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Almli, C. R. et al. BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp. Neurol. 166, 99–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Vawda, R., Woodbury, J., Covey, M., Levison, S. W. & Mehmet, H. Stem cell therapies for perinatal brain injuries. Semin. Fetal Neonatal Med. 12, 259–272 (2007).

    Article  PubMed  Google Scholar 

  105. del Nido, P. J. Minimal incision congenital cardiac surgery. Semin. Thorac. Cardiovasc. Surg. 19, 319–324 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Salgo, I. S. 3D echocardiographic visualization for intracardiac beating heart surgery and intervention. Semin. Thorac. Cardiovasc. Surg. 19, 325–329 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Horvath, K. A., Li, M., Mazilu, D., Guttman, M. A. & McVeigh, E. R. Real-time magnetic resonance imaging guidance for cardiovascular procedures. Semin. Thorac. Cardiovasc. Surg. 19, 330–335 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Grundfest, W. S. et al. Real-time percutaneous optical imaging of anatomical structures in the heart through blood using a catheter-based infrared imaging system. Semin. Thorac. Cardiovasc. Surg. 19, 336–341 (2007).

    Article  PubMed  Google Scholar 

  109. Moskowitz, W. B., Titus, J. L. & Topaz, O. Excimer laser ablation for valvular angioplasty in pulmonary atresia and intact ventricular septum. Lasers Surg. Med. 35, 327–335 (2004).

    Article  PubMed  Google Scholar 

  110. Mittnacht, A. J. & Hollinger, I. Fast-tracking in pediatric cardiac surgery—the current standing. Ann. Card. Anaesth. 13, 92–101 (2010).

    Article  PubMed  Google Scholar 

  111. Lawrence, E. J. et al. Economic and safety implications of introducing fast tracking in congenital heart surgery. Circ. Cardiovasc. Qual. Outcomes 6, 201–207 (2013).

    Article  PubMed  Google Scholar 

  112. Mahmoud, A. B. et al. Effect of modified ultrafiltration on pulmonary function after cardiopulmonary bypass. Chest 128, 3447–3453 (2005).

    Article  PubMed  Google Scholar 

  113. Miyaji, K. et al. Pediatric cardiac surgery without homologous blood transfusion, using a miniaturized bypass system in infants with lower body weight. J. Thorac. Cardiovasc. Surg. 134, 284–289 (2007).

    Article  PubMed  Google Scholar 

  114. Preisman, S. et al. A randomized trial of outcomes of anesthetic management directed to very early extubation after cardiac surgery in children. J. Cardiothorac. Vasc. Anesth. 23, 348–357 (2009).

    Article  PubMed  Google Scholar 

  115. Alghamdi, A. A. et al. Early extubation after pediatric cardiac surgery: systematic review, meta-analysis, and evidence-based recommendations. J. Card. Surg. 25, 586–595 (2010).

    Article  PubMed  Google Scholar 

  116. Naguib, A. N. et al. The role of different anesthetic techniques in altering the stress response during cardiac surgery in children: a prospective, double-blinded, and randomized study. Pediatr. Crit. Care Med. 14, 481–490 (2013).

    Article  PubMed  Google Scholar 

  117. Kipps, A. K., Wypij, D., Thiagarajan, R. R., Bacha, E. A. & Newburger, J. W. Blood transfusion is associated with prolonged duration of mechanical ventilation in infants undergoing reparative cardiac surgery. Pediatr. Crit. Care Med. 12, 52–56 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ozbaran, B. et al. Psychiatric evaluation of children and adolescents with left ventricular assist devices. Psychosom. Med. 74, 554–558 (2012).

    Article  PubMed  Google Scholar 

  119. Rossi, A. et al. The department of psychology within a pediatric cardiac transplant unit. Transplant. Proc. 43, 1164–1167 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Morgan, G. J. et al. Home videoconferencing for patients with severe congential heart disease following discharge. Congenit. Heart Dis. 3, 317–324 (2008).

    Article  PubMed  Google Scholar 

  121. Greenway, A. et al. Point-of-care monitoring of oral anticoagulation therapy in children. Comparison of the CoaguChek XS system with venous INR and venous INR using an International Reference Thromboplastin preparation (rTF/95). Thromb. Haemost. 102, 159–165 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed to the discussion of content, wrote the manuscript, and reviewed/edited the article before submission.

Corresponding author

Correspondence to Emile Bacha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacha, E., Kalfa, D. Minimally invasive paediatric cardiac surgery. Nat Rev Cardiol 11, 24–34 (2014). https://doi.org/10.1038/nrcardio.2013.168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing