Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Morphogens, morphostats, microarchitecture and malignancy

Key Points

  • Morphogenetic fields organize tissue morphology and development in the embryo.

  • Adult tissues need to solve the same problems as embryonic tissue: maintaining form even as constituent cells proliferate, move, differentiate and die.

  • The maintenance of epithelial tissues requires, like morphogenesis, a method of relating cell position to function. A morphogenetic field is an evolutionarily well-tried mechanism.

  • By analogy with morphogens, morphostats maintain normal tissue microarchitecture in the adult.

  • In addition to established molecular abnormalities, the most prominent feature of cancer is the disruption of tissue microarchitecture.

  • Cancer arises more readily in tissues where morphostatic fields fail, in tissues removed from their normal morphostatic fields, and in areas situated at the junction of two tissues where morphostatic fields compete or conflict.

  • Known morphogens are agents that are capable of creating morphostatic fields; disruption of morphogen signalling is increasingly implicated in the aetiology of various cancers.

  • Morphostats most plausibly originate in stem cells and in stromal cells that are adjacent to epithelia.

  • Various testable hypotheses follow on from this, most notably, that some cancers will arise as the result of a different two-hit model (either mutation or hypermethylation of genes) — one in a stromal cell and one in the epithelium.

Abstract

Morphogenetic fields organize tissue morphology in the embryo. By analogy, morphostatic fields maintain normal cell behaviour and normal tissue microarchitecture in the adult. The most prominent feature of cancer is the disruption of tissue microarchitecture. Cancer occurs much more frequently when morphostatic influences fail (metaplasia) or at the junction of two different morphostatic fields. This Review will describe what we know about morphostats and morphostasis, discuss the evidence for the role of disruption of morphostasis in malignancy, and address some testable hypotheses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphogens and the regulation of development and differentiation.

Similar content being viewed by others

References

  1. Alberts, B. et al. Molecular biology of the cell, 4th ed. (Garland Science, New York, 2002).

    Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ohlstein, B. & Spradling, A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439, 470–474 (2006).

    CAS  PubMed  Google Scholar 

  4. Dyson, S. & Gurdon, J. B. The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93, 557–568 (1998).

    CAS  PubMed  Google Scholar 

  5. Gurdon, J., Dyson, S. & Johnston, D. Cells' perception of position in a concentration gradient. Cell 95, 159–162 (1998). This paper provides a succinct summary of morphogen gradients and the roles of concentration, cell position, and receptors in defining cell phenotypes in development.

    CAS  PubMed  Google Scholar 

  6. Gurdon, J. B., Harger, P., Mitchell, A. & Lemaire, P. Activin signalling and response to a morphogen gradient. Nature 371, 487–492 (1994).

    CAS  PubMed  Google Scholar 

  7. Wilson, P. A., Lagna, G., Suzuki, A. & Hemmati-Bribaniou, A. Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177–3184 (1997).

    CAS  PubMed  Google Scholar 

  8. Lawrence, P. & Struhl, G. Morphogens, compartments, and pattern: lessons from Drosophila? Cell 85, 951–961 (1996).

    CAS  PubMed  Google Scholar 

  9. Itoh, Y. & Germain, R. N. Single cell analysis reveals regulated hierarchical T cell antigen receptor signaling thresholds and intraclonal heterogeneity for individual cytokine responses of CD4+ cells. J. Exp. Med. 186, 757–766 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Neumann, C. & Cohen, S. Morphogens and pattern formation. BioEssays 19, 721–729 (1997).

    CAS  PubMed  Google Scholar 

  11. Ober, E. A., Verkade, H., Field, H. A. & Stainier, D. Y. Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442, 688–691 (2006).

    CAS  PubMed  Google Scholar 

  12. Perrimon, N. The genetic basis of patterned baldness in Drosophila. Cell 76, 781–784 (1994).

    CAS  PubMed  Google Scholar 

  13. Wieschaus, E., Nusslein-Volhard, C. & Jurgens, G. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. III. Zygotic loci on the X-chromosome and 4th chromosome. Roux's Arch. Dev. Biol. 193, 296–307 (1984).

    CAS  Google Scholar 

  14. Nusslein-Volhard, C., Frohnhofer, H. G. & Lehmann, R. Determination of anteroposterior polarity in Drosophila. Science 238, 1675–1681 (1987).

    CAS  PubMed  Google Scholar 

  15. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    CAS  PubMed  Google Scholar 

  16. Nusslein-Volhard, C., Wieschaus, E. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Roux's Arch. Dev. Biol. 193, 267–282 (1984).

    CAS  Google Scholar 

  17. Lawrence, P. A. The making of a fly: the genetics of animal design (Blackwell Scientific Publications, Oxford, 1992).

    Google Scholar 

  18. Ettinger, L. & Doljanski, F. On the generation of form by the continuous interactions between cells and their extracellular matrix. Biol. Rev. 67, 459–489 (1992).

    CAS  PubMed  Google Scholar 

  19. Vracko, R. Basal lamina scaffold. Its role in maintenance of tissue structure and in pathogenesis of basal lamina 'thickening'. Front. Matrix Biol. 7, 78–89 (1979).

    Google Scholar 

  20. Bard, J. Morphogenesis. The cellular and molecular processes of developmental anatomy (eds. Barlow, P. W., Bray, D., Green, P. B. & Slack, J. M. W.) (Cambridge Univ. Press, UK, 1990).

    Google Scholar 

  21. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982). This paper describes the dynamic reciprocity between epithelium and the ECM in determining structure and proposes a mechanism for the way in which the ECM directs gene expression.

    CAS  PubMed  Google Scholar 

  22. Simian, M. et al. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 128, 3117–3131 (2001).

    CAS  PubMed  Google Scholar 

  23. Howlett, A. R. & Bissell, M. J. Regulation of mammary epithelial cell function: a role for stromal and basement membrane matrices. Protoplasma 159, 85–95 (1990).

    Google Scholar 

  24. Barcellos-Hoff, M. H. & Bissell, M. J. in Functional Epithelial Cells in Culture (eds. Matlin, K. & Valentich, J. D.) 399–433 (Alan R. Liss, New York, 1989).

    Google Scholar 

  25. Ingber, D. E. & Folkman, J. How does extracellular matrix control capillary morphogenesis? Cell 58, 803–805 (1989).

    CAS  PubMed  Google Scholar 

  26. Weaver, V. M. et al. β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2, 205–216 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Weaver, V. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking bodies. J. Cell Biol. 137, 231–245 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hallett, M. B. The unpredictabiliity of cellular behavior: trivial or of fundamental importance to cell biology? Perspect. Biol. Med. 33, 110–119 (1989).

    CAS  PubMed  Google Scholar 

  29. Gurdon, J. B. A community effect in animal development. Nature 336, 772–774 (1988).

    CAS  PubMed  Google Scholar 

  30. Sachs, T. Epigenetic selection: an alternative mechanism of pattern formation. J. Theoret. Biol. 134, 147–159 (1988).

    Google Scholar 

  31. Kirschner, M. W. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986).

    CAS  PubMed  Google Scholar 

  32. Kirschner, M. W. Biological implications of microtubule dynamics. The Harvey Lectures 83, 1–20 (1989).

    Google Scholar 

  33. Ghabrial, A. S. & Krasnow, M. A. Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 441, 746–749 (2006).

    CAS  PubMed  Google Scholar 

  34. Potter, J. D. Morphostats: a missing concept in cancer biology. Cancer Epidemiol. Biomarkers Prev. 10, 161–170 (2001). Original statement of the morphostat hypothesis.

    CAS  PubMed  Google Scholar 

  35. Tarin, D. Tissue interactions in morphogenesis, morphostasis and carcinogenesis. J. Theor. Biol. 34, 61–72 (1972).

    CAS  PubMed  Google Scholar 

  36. van den Brink, G. R. et al. Sonic hedgehog regulates gastric gland morphogenesis in man and mouse. Gastroenterology 121, 317–328 (2001).

    CAS  PubMed  Google Scholar 

  37. van den Brink, G. R. & Offerhaus, G. J. The morphogenetic code and colon cancer development. Cancer Cell 11, 109–117 (2007).

    CAS  PubMed  Google Scholar 

  38. Crick, F. Diffusion in embryogenesis. Nature 225, 420–422 (1970). The first attempt to quantitate the diffusion distance across a morphogen gradient.

    CAS  PubMed  Google Scholar 

  39. Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).

    CAS  PubMed  Google Scholar 

  40. Foulds, L. Neoplastic development (Academic Press, London, 1969).

    Google Scholar 

  41. Cram, L. S., Bartholdi, M. F., Ray, F. A., Travis, G. L. & Kraemer, P. M. Spontaneous neoplastic evolution of Chinese hamster cells in culture: multistep progression of karyotype. Cancer Res. 43, 4828–4837 (1983).

    CAS  PubMed  Google Scholar 

  42. Kraemer, P. M., Travis, G. L., Ray, F. A. & Cram, L. S. Spontaneous neoplastic evolution of Chinese hamster cells in culture: multistep progression of phenotype. Cancer Res. 43, 4822–4827 (1983).

    CAS  PubMed  Google Scholar 

  43. Parodi, S. & Brambilla, G. Relationships between mutation and transformation frequencies in mammalian cells treated 'in vitro' with chemical carcinogens. Mutat. Res. 47, 53–74 (1977).

    CAS  PubMed  Google Scholar 

  44. Clark, W. H. The nature of cancer: morphogenesis and progressive (self)-disorganization in neoplastic development and progression. Acta Oncologica 34, 3–21 (1995).

    PubMed  Google Scholar 

  45. Blanton, R. A., Perez-Reyes, N., Merrick, D. T. & McDougall, J. K. Epithelial cells immortalized by human papillomaviruses have premalignant characteristics in organotypic culture. Am. J. Pathol. 138, 673–685 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Whitehead, R., Zhang, H. & Hayward, I. Retention of tissue-specific phenotype in a panel of colon carcinoma cell lines: relationship to clinical correlates. Immunol. Cell Biol. 70, 227–236 (1992).

    PubMed  Google Scholar 

  47. Whitehead, R. H., Jones, J. K., Gabriel, A. & Lukies, R. E. A new colon carcinoma cell line (LIM1863) that grows as organoids with spontaneous differentiation into crypt-like structures in vitro. Cancer Res. 47, 2683–2689 (1987). This paper establishes that mimicking organogenesis in vitro often produces a caricature of normal tissue.

    CAS  PubMed  Google Scholar 

  48. Kleinman, H. K. et al. Basement membrane complexes with biological activity. Biochemistry 25, 312–318 (1986).

    CAS  PubMed  Google Scholar 

  49. Aggeler, J. et al. Cytodifferentiation of mouse mammary epithelial cells cultured on a reconstituted basement membrane reveals striking similarities to development in vivo. J. Cell Sci. 99, 407–417 (1991). This and the next two papers show the importance of the mesenchyme in approximating normal organogenesis in vitro.

    PubMed  Google Scholar 

  50. Kanazawa, T. & Hosick, H. L. Transformed growth phenotype of mouse mammary epithelium in primary culture induced by specific fetal mesenchymes. J. Cell Physiol. 153, 381–391 (1992).

    CAS  PubMed  Google Scholar 

  51. Streuli, C. H., Bailey, D. & Bissell, M. J. Control of mammary epithelial differentiation: basement membrane induces tissue specific gene expression in the absence of cell–cell interaction and morphological polarity. J. Cell Biol. 115, 1383–1395 (1991).

    CAS  PubMed  Google Scholar 

  52. Lalani, E. N. et al. Trefoil factor-2, human spasmolytic polypeptide, promotes branching morphogenesis in MCF-7 cells. Laboratory Invest. 79, 537–546 (1999).

    CAS  Google Scholar 

  53. Slack, J. M. W. Epithelial metaplasia and the second anatomy. Lancet 2, 268–271 (1986). This paper presents metaplasia as a single step from normal and as a disrupted microarchitecture that often has malignant potential.

    CAS  PubMed  Google Scholar 

  54. Willis, R. A. Pathology of tumours (Butterworth & Co., London, 1967).

    Google Scholar 

  55. Hamamoto, T. et al. Altered microsatellites in incomplete-type intestinal metaplasia adjacent to primary gastic cancers. J. Clin. Pathol. 50, 841–846 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Park, W. S. et al. Frequent somatic mutations of the β-catenin gene in intestinal-type gastric cancer. Cancer Res. 59, 4257–4260 (1999).

    CAS  PubMed  Google Scholar 

  57. Potter, J. D. Colorectal cancer: molecules and populations. J. Natl Cancer Inst. 91, 916–932 (1999).

    CAS  PubMed  Google Scholar 

  58. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature Genet. 38, 468–473 (2006).

    CAS  PubMed  Google Scholar 

  59. Maley, C. C. et al. The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res. 64, 7629–7633 (2004).

    CAS  PubMed  Google Scholar 

  60. Brentnall, T. et al. Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterol. 107, 369–378 (1994).

    CAS  Google Scholar 

  61. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer 6, 924–935 (2006).

    CAS  Google Scholar 

  62. Bartsich, E. G., O'Leary, J. A. & Moore, J. G. Carcinosarcoma of the uterus. A 50-year review of 32 cases (1917–1966). Obstet. Gynecol. 30, 518–523 (1967).

    CAS  PubMed  Google Scholar 

  63. Wada, H. et al. Molecular evidence that most but not all carcinosarcomas of the uterus are combination tumors. Cancer Res. 57, 5379–5385 (1997).

    CAS  PubMed  Google Scholar 

  64. Reis, R. M., Konu-Kebleblicioglu, D., Lopes, J. M., Kleihues, P. & Ohgaka, H. Genetic profile of gliosarcomas. Am. J. Pathol. 156, 425–432 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Birchmeier, C. & Birchmeier, W. Molecular aspects of mesenchymal epithelial interactions. Annu. Rev. Cell Biol. 9, 511–540 (1993).

    CAS  PubMed  Google Scholar 

  66. Okada, T. S. Transdifferentiation. Flexibility in cell differentiation (Clarendon Press, Oxford, UK, 1991).

    Google Scholar 

  67. Fukamachi, H. Disorganization of stroma alters epithelial differentiation of the glandular stomach in adult mice. Cell Tissue Res. 243, 65–68 (1986).

    CAS  PubMed  Google Scholar 

  68. Tarin, D., Thompson, E. W. & Newgreen, D. F. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 65, 5996–6000 (2005).

    CAS  PubMed  Google Scholar 

  69. Thompson, E. W., Newgreen, D. F. & Tarin, D. Carcinoma invasion and metastasis: a role for epithelial–mesenchymal transition? Cancer Res. 65, 5991–5995 (2005).

    CAS  PubMed  Google Scholar 

  70. Tosh, D. & Slack, J. M. How cells change their phenotype. Nature Rev. Mol. Cell Biol. 3, 187–194 (2002).

    CAS  Google Scholar 

  71. Shen, C.-N., Slack, J. M. W. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver. Nature Cell Biol. 2, 879–887 (2000).

    CAS  PubMed  Google Scholar 

  72. Hu, E., Tontonoz, P. & Spiegelman, B. M. Transdifferentiation of myoblasts by the adipogenic transcription factors PPARγ and C/EBPα. Proc. Natl Acad. Sci. USA 92, 9856–9860 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Weintraub, H. et al. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl Acad. Sci. USA 86, 5434–5438 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005). This paper describes the importance of specific physical constraints on cell phenotype.

    CAS  PubMed  Google Scholar 

  75. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  PubMed  Google Scholar 

  76. Moore, G. E. Foreign body carcinogenesis. Cancer 67, 2731–2732 (1991).

    CAS  PubMed  Google Scholar 

  77. Brand, K. G. Diversity and complexity of carcinogenic processes: conceptual inferences from foreign-body tumorigenesis. J. Nat. Cancer Inst. 57, 973–976 (1976).

    CAS  PubMed  Google Scholar 

  78. Bischoff, F. & Fryson, G. Carcinogenesis through solid state surfaces. Prog. Exp. Tumor Res. 5, 85–133 (1964).

    CAS  PubMed  Google Scholar 

  79. Lindeman, G., McKay, M., Taubman, K. & Bilous, A. M. Malignant fibrous histiocytoma developing in bone 44 years after shrapnel trauma. Cancer 66, 2229–2232 (1990).

    CAS  PubMed  Google Scholar 

  80. Tlsty, T. D. Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Curr. Opin. Cell Biol. 10, 647–653 (1998). This paper shows the importance of specific physical constraints on cell-cycle control.

    CAS  PubMed  Google Scholar 

  81. Gadbois, D. M., Bradbury, E. M. & Lehnert, B. E. Control of radiation-induced G1 arrest by cell–substratum interactions. Cancer Res. 57, 1151–1156 (1997).

    CAS  PubMed  Google Scholar 

  82. LeBlond, C. Classification of cell populations on the basis of their proliferative behavior. Natl Cancer Inst. Monographs 14, 119–150 (1964). Identifies the importance of cell position in a tissue in determining phenotype and differentiation.

    CAS  Google Scholar 

  83. Fenoglio, C. M. & Ferenczy, A. Etiologic factors in cervical neoplasia. Semin. Oncol. 9, 349–372 (1982).

    CAS  PubMed  Google Scholar 

  84. Hamilton, S. R., Smith, R. R. L. & Cameron, J. L. Prevalence and characteristics of Barrett esophagus in patients with adenocarcinoma of the esophagus or esophagogastric junction. Human Pathol. 19, 942–948 (1988).

    CAS  Google Scholar 

  85. Wong, J. & Finckh, E. S. Hyperplasia of similar and dissimilar mucosa adjoining gastric mucosal wounds in the rat. Pathology 9, 243–250 (1977).

    CAS  PubMed  Google Scholar 

  86. Wong, J. & Loewenthal, J. Chronic gastric ulcer in the rat produced by wounding at the fundo-antral junction. Gastrenterol 71, 416–420 (1976).

    CAS  Google Scholar 

  87. Schneider, P. et al. Carcinogenesis by methylbenzylnitrosamine near the squamocolumnar junction and methylamylnitrosamine metabolism in the mouse forestomach. Cancer Lett. 102, 125–131 (1996).

    CAS  PubMed  Google Scholar 

  88. Koike, K., Hinrichs, S. H., Isselbacher, K. J. & Jay, G. Transgenic mouse model for human gastric carcinoma. Proc. Natl Acad. Sci. 86, 5615–5619 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hinrichs, S. H., Fontes, J. D., Bills, N. D. & Schneider, P. D. in Multistage Carcinogenesis (ed. Harris, C. C.) 250–274 (Japan Scientific Society Press, Tokyo, 1992).

    Google Scholar 

  90. Pierce, G. B. Teratocarcinoma: model for a developmental concept of cancer (Academic Press, New York, 1967).

    Google Scholar 

  91. Pierce, G., Dixon, F. & Verney, E. Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies. Lab. Invest. 9, 583–602 (1960).

    PubMed  Google Scholar 

  92. Pierce, G., Stevens, L. & Nakane, P. Ultrastructural analysis of the early development of teratocarcinomas. J. Natl Cancer Inst. 39, 755–773 (1967).

    CAS  PubMed  Google Scholar 

  93. Stevens, L. Origin of testicular teratomas from primordial germ cells in mice. J. Natl Cancer Inst. 38, 549–552 (1967).

    CAS  PubMed  Google Scholar 

  94. Stevens, L. & Little, C. Spontaneous testicular teratomas in an inbred strain of mice. Proc. Natl Acad. Sci. USA 40, 1080–1087 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Brinster, R. L. The effect of cells transferred into the mouse blastocyst on subsequent development. J. Exper. Med. 140, 1049–1056 (1974). This paper shows the reversion of malignant phenotype by restoration of a normal microenvironment.

    CAS  Google Scholar 

  96. Sell, S. & Pierce, G. B. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab. Invest. 70, 6–22 (1994).

    CAS  PubMed  Google Scholar 

  97. Webb, C. W., Gootwine, E. & Sachs, L. Developmental potential of myeloid leukemia cells injected into rat midgestation embryos. Dev. Biol. 101, 221–224 (1984).

    CAS  PubMed  Google Scholar 

  98. Coleman, W. B., Wennerberg, A. E., Smith, G. J. & Grisham, J. W. Regulation of the differentiation of diploid and some aneuploid rat liver epithelial (stemlike) cells by the hepatic microenvironment. Am. J. Pathol. 142, 1373–1382 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Stevens, L. C. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Develop. Biol. 21, 364–382 (1970).

    CAS  PubMed  Google Scholar 

  100. Chang, H. Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. 99, 12877–12882 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ruben, L. N. The effects of implanting anuran cancer into regenerating adult urodele limbs. I. Simple regenerating systems. J. Morphology 98, 389–403 (1956).

    Google Scholar 

  102. Breedis, C. Induction of accessory limbs and of sarcoma in the newt (Triturus viridescens) with carcinogenic substances. Cancer Res. 12, 861–866 (1952).

    CAS  PubMed  Google Scholar 

  103. Prehn, R. T. Regeneration versus neoplastic growth. Carcinogenesis 18, 1439–1444 (1997).

    CAS  PubMed  Google Scholar 

  104. Cummins, H. & Midlo, C. Finger prints, palms and soles: an introduction to dermatoglyphics (The Blakiston Company, Philadelphia, 1943).

    Google Scholar 

  105. Pierce, G. B. & Speers, W. C. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res. 48, 1996–2004 (1988).

    CAS  PubMed  Google Scholar 

  106. Riss, J. et al. Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res. 66, 7216–7224 (2006).

    CAS  PubMed  Google Scholar 

  107. Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442, 457–460 (2006).

    CAS  PubMed  Google Scholar 

  108. Xia, W., Phan, T. T., Lim, I. J., Longaker, M. T. & Yang, G. P. Complex epithelial–mesenchymal interactions modulate transforming growth factor-β expression in keloid-derived cells. Wound Repair Regen. 12, 546–556 (2004).

    PubMed  Google Scholar 

  109. Phan, T. T. et al. Smad3 signalling plays an important role in keloid pathogenesis via epithelial–mesenchymal interactions. J. Pathol. 207, 232–242 (2005).

    CAS  PubMed  Google Scholar 

  110. Iyer, V. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).

    CAS  PubMed  Google Scholar 

  111. Inoue, Y., Grant, J. P. & Snyder, P. J. Effect of glutamine-supplemented total parenteral nutrition on recovery of the small intestine after starvation atrophy. J. Parenter. Enteral. Nutr. 17, 165–170 (1993).

    CAS  Google Scholar 

  112. Rubin, C. E. et al. in Intestinal biopsy: ciba foundation study group No. 14. (eds. Wolstenholme, G. E. W. & Cameron, M. P.) (Churchill, Edinburgh, 1962).

    Google Scholar 

  113. Rubin, C. E. et al. Studies of celiac sprue. III. The effect of repeated wheat instillation into the proximal ileum of patients on a gluten free diet. Gastroenterology 43, 621–624 (1962).

    CAS  PubMed  Google Scholar 

  114. Robinson, J. W. L., Dowling, R. H. & Riecken, E.-O. Mechanisms of intestinal adaptation, Falk Symposium 30 (MTP Press Ltd, Lancaster, 1982).

    Google Scholar 

  115. Williamson, R. C. N. & Malt, R. A. in Mechanisms of intestinal adaptation, Falk Symposium 30 (eds. Robinson, J. W. L., Dowling, R. H. & Riecken, E.-O.) 215–224 (MTP Press Ltd, Lancaster, 1982).

    Google Scholar 

  116. Orr, J. W. & Spencer, A. T. in Tissue interactions in carcinogenesis (ed. Tarin, D. E.) 291–304 (Academic Press, London, 1972). This paper is a summary of several experiments that were the first to show the role of stromal abnormalities in epithelial cancer.

    Google Scholar 

  117. Olumi, A. F., Dazin, P. & Tlsty, T. D. A novel coculture technique demonstrates that normal human prostatic fibroblasts contribute to tumor formation of LNCaP cells by retarding cell death. Cancer Res. 58, 4525–4530 (1998).

    CAS  PubMed  Google Scholar 

  118. Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    CAS  PubMed  Google Scholar 

  119. Chung, L. W. Fibroblasts are critical determinants in prostatic cancer growth and dissemination Cancer Metastasis Rev. 10, 263–274 (1991).

    CAS  PubMed  Google Scholar 

  120. Chung, L. W. K. Implications of stromal–epithelial interaction in human prostate cancer growth, progression and differentiation. Semin. Cancer Biol. 4, 183–192 (1993).

    CAS  PubMed  Google Scholar 

  121. Hayward, S. W., Grossfeld, G. D., Tlsty, T. D. & Cunha, G. R. Genetic and epigenetic influences in prostatic carcinogenesis. Internat. J. Oncol. 13, 35–47 (1998).

    CAS  Google Scholar 

  122. Rettig, M. et al. Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients. Science 276, 1851–1854 (1997).

    CAS  PubMed  Google Scholar 

  123. Deng, G., Lu, Y., Zlotnikov, G., Thor, A. & Smith, H. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274, 2057–2059 (1996).

    CAS  PubMed  Google Scholar 

  124. Gould, K. et al. Genetic evaluation of candidate genes for the Mom1 modifier of intestinal neoplasia in mice. Genetics 144, 1777–1785 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hill, R., Song, Y., Cardiff, R. D. & Van Dyke, T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123, 1001–1011 (2005).

    CAS  PubMed  Google Scholar 

  126. Zhu, Y., Ghosh, P., Charnay, P., Burns, D. K. & Parada, L. F. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296, 920–922 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Yang, F.-C. et al. Nf1+/−; mast cells induce neurofibroma like phenotypes through secreted TGF-β signaling. Hum. Mol. Genet. 15, 2421–2437 (2006).

    CAS  PubMed  Google Scholar 

  128. Rubin, J. B. & Gutmann, D. H. Neurofibromatosis type 1 — a model for nervous system tumour formation? Nature Rev. Cancer 5, 557–564 (2005).

    CAS  Google Scholar 

  129. Bhowmick, N. A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004).

    CAS  PubMed  Google Scholar 

  130. Cheng, N. et al. Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene 24, 5053–5068 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kusserow, A. et al. Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433, 156–160 (2005).

    CAS  PubMed  Google Scholar 

  132. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006). This paper documents the wide role of a key morphogen signalling pathway in development and malignancy.

    CAS  PubMed  Google Scholar 

  133. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signalling. Cell 103, 311–320 (2000).

    CAS  PubMed  Google Scholar 

  134. Morin, P. et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    CAS  PubMed  Google Scholar 

  135. Lowy, A. M. et al. β-Catenin/Wnt signaling regulates expression of the membrane type 3 matrix metalloproteinase in gastric cancer. Cancer Res. 66, 4734–4741 (2006).

    CAS  PubMed  Google Scholar 

  136. Cao, Q., Lu, X. & Feng, Y. J. Glycogen synthase kinase-3β positively regulates the proliferation of human ovarian cancer cells. Cell Res. 16, 671–677 (2006).

    CAS  PubMed  Google Scholar 

  137. Dale, T. et al. Compartment switching of WNT-2 expression in human breast tumors. Cancer Res. 56, 4320–4323 (1996).

    CAS  PubMed  Google Scholar 

  138. Nusse, R. Wnt signaling in disease and in development. Cell Res. 15, 28–32 (2005).

    CAS  PubMed  Google Scholar 

  139. Nusse, R. & Varmus, H. Wnt genes. Cell 69, 1073–1087 (1992).

    CAS  PubMed  Google Scholar 

  140. Blavier, L., Lazaryev, A., Dorey, F., Shackleford, G. M. & DeClerck, Y. A. Matrix metalloproteinases play an active role in Wnt1-induced mammary tumorigenesis. Cancer Res. 66, 2691–2699 (2006).

    CAS  PubMed  Google Scholar 

  141. Pasca di Magliano, M. & Hebrok, M. Hedgehog signalling in cancer formation and maintenance. Nature Rev. Cancer 3, 903–911 (2003).

    Google Scholar 

  142. Liu, S. et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66, 6063–6071 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Johnson, R. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    CAS  PubMed  Google Scholar 

  144. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996).

    CAS  PubMed  Google Scholar 

  145. Yoshida, H., Broaddus, R., Cheng, W., Xie, S. & Naora, H. Deregulation of the HOXA10 homeobox gene in endometrial carcinoma: role in epithelial–mesenchymal transition. Cancer Res. 66, 889–897 (2006).

    CAS  PubMed  Google Scholar 

  146. Saito, T., Nagai, M. & Ladanyi, M. SYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by snail and slug: a potential mechanism for aberrant mesenchymal to epithelial transition in human synovial sarcoma. Cancer Res. 66, 6919–6927 (2006).

    CAS  PubMed  Google Scholar 

  147. Novak, P. et al. Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res. 66, 10664–10670 (2006).

    CAS  PubMed  Google Scholar 

  148. Lynch, M. et al. Mutational analysis of the transforming growth factor β receptor Type II gene in human ovarian carcinoma. Cancer Res. 58, 4227–4232 (1998).

    CAS  PubMed  Google Scholar 

  149. Markowitz, S. et al. Inactivation of the Type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338 (1995).

    CAS  PubMed  Google Scholar 

  150. Massague, J., Blain, S. W. & Lo, R. S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309 (2000).

    CAS  PubMed  Google Scholar 

  151. Bierie, B. & Moses, H. L. Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nature Rev. Cancer 6, 506–520 (2006).

    CAS  PubMed  Google Scholar 

  152. Grabher, C., von Boehmer, H. & Look, A. T. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nature Rev. Cancer 6, 347–359 (2006).

    CAS  Google Scholar 

  153. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    CAS  PubMed  Google Scholar 

  154. Bowles, J. et al. Retinoid signaling determines germ cell fate in mice. Science 312, 596–600 (2006).

    CAS  PubMed  Google Scholar 

  155. Zai-Sheng, Z., Polakowska, R., Johnson, A. & Goldsmith, L. A. Transcriptional control of epidermal growth factor receptor by retinoic acid. Cell Growth Diff. 3, 225–232 (1992).

    Google Scholar 

  156. Tabin, C. The initiation of the limb bud: growth factors, Hox genes, and retinoids. Cell 80, 671–674 (1995).

    CAS  PubMed  Google Scholar 

  157. Hong, W. et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 323, 795–801 (1990).

    CAS  PubMed  Google Scholar 

  158. Potter, J. D. At the interfaces of epidemiology, genetics, and genomics. Nature Rev. Genet. 2, 142–147 (2001).

    CAS  PubMed  Google Scholar 

  159. Crosnier, C., Stamataki, D. & Lewis, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nature Rev. Genet. 7, 349–359 (2006). This paper summarizes what is known about the interlocking pathways responsible for the morphostatic stability of the small bowel.

    CAS  PubMed  Google Scholar 

  160. Madison, B. B. et al. Epithelial hedgehog signals pattern the intestinal crypt–villus axis. Development 132, 279–289 (2005).

    CAS  PubMed  Google Scholar 

  161. van den Brink, G. R. et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nature Genet. 36, 277–282 (2004).

    CAS  PubMed  Google Scholar 

  162. Karlsson, L., Lindahl, P., Heath, J. K. & Betsholtz, C. Abnormal gastrointestinal development in PDGF-A and PDGFR-α deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development 127, 3457–3466 (2000).

    CAS  PubMed  Google Scholar 

  163. Haramis, A. P. et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303, 1684–1686 (2004).

    CAS  PubMed  Google Scholar 

  164. Hardwick, J. C. et al. Bone morphogenetic protein 2 is expressed by, and acts upon, mature epithelial cells in the colon. Gastroenterology 126, 111–121 (2004).

    CAS  PubMed  Google Scholar 

  165. He, X. C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signaling. Nature Genet. 36, 1117–1121 (2004).

    CAS  PubMed  Google Scholar 

  166. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    CAS  PubMed  Google Scholar 

  167. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 379–383 (1998).

    CAS  PubMed  Google Scholar 

  168. van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005).

    CAS  PubMed  Google Scholar 

  169. Batlle, E. et al. EphB receptor activity suppresses colorectal cancer progression. Nature 435, 1126–1130 (2005).

    CAS  PubMed  Google Scholar 

  170. Clevers, H. & Batlle, E. EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer Res. 66, 2–5 (2006).

    CAS  PubMed  Google Scholar 

  171. Gregorieff, A. et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129, 626–638 (2005).

    CAS  PubMed  Google Scholar 

  172. Kicheva, A. et al. Kinetics of morphogen gradient formation. Science 315, 521–525 (2007).

    CAS  PubMed  Google Scholar 

  173. Sick, S., Reinker, S., Timmer, J. & Schlake, T. WNT and DKK determine hair follicle spacing through a reaction–diffusion mechanism. Science 314, 1447–1450 (2006).

    CAS  PubMed  Google Scholar 

  174. Manjon, C., Sanchez-Herrero, E. & Suzanne, M. Sharp boundaries of Dpp signalling trigger local cell death required for Drosophila leg morphogenesis. Nature Cell Biol. 9, 57–63 (2007).

    CAS  PubMed  Google Scholar 

  175. Tabata, T. Genetics of morphogen gradients. Nature Rev. Genet. 2, 620–630 (2001).

    CAS  PubMed  Google Scholar 

  176. Kerszberg, M. & Wolpert, L. Mechanisms for positional signalling by morphogen transport: a theoretical study. J. Theor. Biol. 191, 103–114 (1998).

    CAS  PubMed  Google Scholar 

  177. Nelson, C. M., Vanduijn, M. M., Inman, J. L., Fletcher, D. A. & Bissell, M. J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314, 298–300 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

Basal-cell nevus syndrome

FURTHER INFORMATION

John D. Potter's homepage

The Wnt homepage

Glossary

Angiogenesis

The formation of new blood vessels.

Major histocompatibility complex

(MHC). A genetic region encoding proteins that are involved in antigen presentation to T cells. MHC class I molecules that are bound to a peptide are recognized by the T-cell receptors of CD8+ T cells.

Condensation

A cellular aggregation with a higher number of cells per unit volume than the surrounding tissue that is characteristic of the early stages of limb and organ morphogenesis.

Stromal

Of the stroma, which is an organ compartment that serves as the connective tissue framework; it includes fibroblasts, immune defence cells and fat cells.

Metaplasia

Metaplasia involves the proliferation of a cell type that is not commonly found in a particular tissue space. For example, squamous metaplasia occurs in the airways of smokers and represents the replacement of columnar epithelial cells with squamous cells.

Epithelial–mesenchymal transition

Conversion from an epithelial to a mesenchymal phenotype, which is a normal component of embryonic development. In carcinomas, this transformation results in altered cell morphology, the expression of mesenchymal proteins, and increased invasiveness.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potter, J. Morphogens, morphostats, microarchitecture and malignancy. Nat Rev Cancer 7, 464–474 (2007). https://doi.org/10.1038/nrc2146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing