Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The promise of cancer vaccines

Abstract

From early excitement to total disillusionment and now gaining momentum again, cancer vaccination has been a real roller-coaster ride. Are the current expectations justified or will there be further disappointment? In this perspective article, I will discuss why the rationale of cancer vaccination does make sense after all and offer some thoughts and guidelines on how to get it right this time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antitumour effector arms of the immune response.
Figure 2: Ex vivo loading of dendritic cells with tumour antigens.
Figure 3: Activation of T cells by dendritic cells.
Figure 4: Mechanisms of tumour-mediated immune evasion.

Similar content being viewed by others

References

  1. Nauts, H. C. Bacteria and cancer: antagonisms and benefits. Cancer Surv. 8, 713–723 (1989).

    CAS  PubMed  Google Scholar 

  2. Prehn, R. T. & Main, J. M. Immunity to methylcholantrene-induced sarcomas. J. Natl Cancer Inst. 18, 769–778 (1957).

    CAS  PubMed  Google Scholar 

  3. Klein, G., Sogren, H. O., Klein, H. & Hellstrom, K. E. Demonstration of resistance against methylcholantrene-induced sarcomas in primary autochtonous host. Cancer Res. 20, 1561–1572 (1960).

    CAS  PubMed  Google Scholar 

  4. Thomas, L. Discussions of cellular and humoral aspects of the hypersensitive states (Hoeber–Harper, New York, 1959).

    Google Scholar 

  5. Burnet, F. M. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13, 1–27 (1970).

    CAS  PubMed  Google Scholar 

  6. Livingston, P. Active specific immunotherapy in the treatment of patients with cancer. Immunol. Allergy Clin. North Am. 11, 410–430 (1991).

    Google Scholar 

  7. Hewitt, H. B., Blake, E. R. & Walder, A. S. A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin. Br. J. Cancer 33, 241–259 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Stutman, O. Chemical carcinogenesis in nude mice: comparison between nude mice from homozygous matings and heterozygous matings and effect of age and carcinogen dose. J. Natl Cancer Inst. 62, 353–358 (1979).

    CAS  PubMed  Google Scholar 

  9. Rygaard, J. & Povlsen, C. O. The mouse mutant nude does not develop spontaneous tumours. An argument against immunological surveillance. Acta Pathol. Microbiol. Scand. Microbiol. Immunol. [B] 82, 99–106 (1974).

    CAS  Google Scholar 

  10. Gatti, R. A. & Good, R. A. Occurrence of malignancy in immunodeficiency diseases. A literature review. Cancer 28, 89–98 (1971).

    CAS  PubMed  Google Scholar 

  11. Penn, I. Tumors of the immunocompromised patient. Annu. Rev. Med. 39, 63–73 (1988).

    CAS  PubMed  Google Scholar 

  12. Van Pel, A. & Boon, T. Protection against a nonimmunogenic mouse leukemia by an immunogenic variant obtained by mutagenesis. Proc. Natl Acad. Sci. USA 79, 4718–4722 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol. 3, 991–998 (2002).

    CAS  Google Scholar 

  14. Smyth, M. J., Godfrey, D. I. & Trapani, J. A. A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunol. 2, 293–299 (2001).

    CAS  Google Scholar 

  15. Pardoll, D. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol. 21, 807–839 (2003).

    CAS  PubMed  Google Scholar 

  16. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    CAS  PubMed  Google Scholar 

  17. Pawelec, G., Zeuthen, J. & Kiessling, R. Escape from host-antitumor immunity. Crit. Rev. Oncog. 8, 111–141 (1997).

    CAS  PubMed  Google Scholar 

  18. Marincola, F. M., Jaffee, E. M., Hicklin, D. J. & Ferrone, S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol. 74, 181–273 (2000).

    CAS  PubMed  Google Scholar 

  19. Dalgleish, A. G. Cancer vaccines. Br. J. Cancer 82, 1619–1624 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mason, D. A very high level of crossreactivity is an essential feature of the T- cell receptor. Immunol. Today 19, 395–404 (1998).

    CAS  PubMed  Google Scholar 

  21. Kersh, G. J. & Allen, P. M. Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands. J. Exp. Med. 184, 1259–1268 (1996).

    CAS  PubMed  Google Scholar 

  22. Wucherpfennig, K. W. & Strominger, J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schild, H., Rotzschke, O., Kalbacher, H. & Rammensee, H. G. Limit of T cell tolerance to self proteins by peptide presentation. Science 247, 1587–1589 (1990).

    CAS  PubMed  Google Scholar 

  24. Heiser, A. et al. Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J. Immunol. 164, 5508–5514 (2000).

    CAS  PubMed  Google Scholar 

  25. Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13, 829–840 (2000).

    CAS  PubMed  Google Scholar 

  26. Morgan, D. J. et al. Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J. Immunol. 160, 643–651 (1998).

    CAS  PubMed  Google Scholar 

  27. de Visser, K. E. et al. Tracing and characterization of the low-avidity self-specific T cell repertoire. Eur. J. Immunol. 30, 1458–1468 (2000).

    CAS  PubMed  Google Scholar 

  28. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    CAS  PubMed  Google Scholar 

  29. Janeway, C. A. Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13, 11–16 (1992).

    CAS  PubMed  Google Scholar 

  30. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    CAS  PubMed  Google Scholar 

  31. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    CAS  PubMed  Google Scholar 

  32. Reis e Sousa, C. Dendritic cells as sensors of infection. Immunity 14, 495–498 (2001).

    CAS  PubMed  Google Scholar 

  33. Sebzda, E. et al. Selection of the T cell repertoire. Annu. Rev. Immunol. 17, 829–874 (1999).

    CAS  PubMed  Google Scholar 

  34. Van Parijs, L. & Abbas, A. K. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280, 243–248 (1998).

    CAS  PubMed  Google Scholar 

  35. Adler, A. J. et al. CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J. Exp. Med. 187, 1555–1564 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kurts, C., Kosaka, H., Carbone, F. R., Miller, J. F. & Heath, W. R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Steinman, R. M. & Nussenzweig, M. C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl Acad. Sci. USA 99, 351–358 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shevach, E. M. Regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    CAS  PubMed  Google Scholar 

  39. Roncarolo, M. G., Bacchetta, R., Bordignon, C., Narula, S. & Levings, M. K. Type 1 T regulatory cells. Immunol. Rev. 182, 68–79 (2001).

    CAS  PubMed  Google Scholar 

  40. Read, S. & Powrie, F. CD4+ regulatory T cells. Curr. Opin. Immunol. 13, 644–649 (2001).

    CAS  PubMed  Google Scholar 

  41. Schirrmacher, V. et al. Immunization with virus-modified tumor cells. Semin. Oncol. 25, 677–696 (1998).

    CAS  PubMed  Google Scholar 

  42. Chan, A. D. & Morton, D. L. Active immunotherapy with allogeneic tumor cell vaccines: present status. Semin. Oncol. 25, 611–622 (1998).

    CAS  PubMed  Google Scholar 

  43. Welsh, R. M. & Selin, L. K. No one is naive: the significance of heterologous T-cell immunity. Nature Rev. Immunol. 2, 417–426 (2002).

    CAS  Google Scholar 

  44. Adams, A. B., Pearson, T. C. & Larsen, C. P. Heterologous immunity: an overlooked barrier to tolerance. Immunol. Rev. 196, 147–160 (2003).

    CAS  PubMed  Google Scholar 

  45. Alexander-Miller, M. A., Leggatt, G. R. & Berzofsky, J. A. Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc. Natl Acad. Sci. USA 93, 4102–4107 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeh, H. J. 3rd, Perry-Lalley, D., Dudley, M. E., Rosenberg, S. A. & Yang, J. C. High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J. Immunol. 162, 989–994 (1999).

    CAS  PubMed  Google Scholar 

  47. Cordaro, T. A., de Visser, K. E., Tirion, F. H., Schumacher, T. N. & Kruisbeek, A. M. Can the low-avidity self-specific T cell repertoire be exploited for tumor rejection? J. Immunol. 168, 651–660 (2002).

    CAS  PubMed  Google Scholar 

  48. Gilboa, E. The makings of a tumor rejection antigen. Immunity 11, 263–270 (1999).

    CAS  PubMed  Google Scholar 

  49. Loeb, L. A. A mutator phenotype in cancer. Cancer Res. 61, 3230–3239 (2001).

    CAS  PubMed  Google Scholar 

  50. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    CAS  PubMed  Google Scholar 

  51. Zitvogel, L. et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J. Exp. Med. 183, 87–97 (1996).

    CAS  PubMed  Google Scholar 

  52. Fields, R. C., Shimizu, K. & Mule, J. J. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc. Natl Acad. Sci. USA 95, 9482–9487 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA 90, 3539–3543 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Boczkowski, D., Nair, S. K., Snyder, D. & Gilboa, E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med. 184, 465–472 (1996).

    CAS  PubMed  Google Scholar 

  55. Boczkowski, D., Nair, S. K., Nam, J. H., Lyerly, H. K. & Gilboa, E. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res. 60, 1028–1034 (2000).

    CAS  PubMed  Google Scholar 

  56. Grunebach, F., Muller, M. R., Nencioni, A. & Brossart, P. Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes. Gene Ther. 10, 367–374 (2003).

    CAS  PubMed  Google Scholar 

  57. Nair, S. K. et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nature Med. 6, 1011–1017 (2000).

    CAS  PubMed  Google Scholar 

  58. Vonderheide, R. H., Hahn, W. C., Schultze, J. L. & Nadler, L. M. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 10, 673–679 (1999).

    CAS  PubMed  Google Scholar 

  59. Schmitz, M. et al. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res. 60, 4845–4849 (2000).

    CAS  PubMed  Google Scholar 

  60. Andersen, M. H. et al. Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res. 61, 5964–5968 (2001).

    CAS  PubMed  Google Scholar 

  61. Zeis, M. et al. Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-rna-transfected dendritic cells. J. Immunol. 170, 5391–5397 (2003).

    CAS  PubMed  Google Scholar 

  62. Barsoum, A. L., Rohrer, J. W. & Coggin, J. H. 37kDa oncofetal antigen is an autoimmunogenic homologoue of the 37kDa laminin receptor precursor. Cell. Mol. Biol. Lett. 5, 207–230 (2000).

    CAS  Google Scholar 

  63. Biragyn, A. et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol. 167, 6644–6653 (2001).

    CAS  PubMed  Google Scholar 

  64. You, Z., Huang, X., Hester, J., Toh, H. C. & Chen, S. Y. Targeting dendritic cells to enhance DNA vaccine potency. Cancer Res. 61, 3704–3711 (2001).

    CAS  PubMed  Google Scholar 

  65. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor dec-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T Cell Tolerance. J. Exp. Med. 196, 1627–1638 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. de Gruijl, T. D. et al. Prolonged maturation and enhanced transduction of dendritic cells migrated from human skin explants after in situ delivery of CD40-targeted adenoviral vectors. J. Immunol. 169, 5322–5331 (2002).

    PubMed  Google Scholar 

  68. Almand, B. et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166, 678–689 (2001).

    CAS  PubMed  Google Scholar 

  69. Gabrilovich, D. et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166 (1998).

    CAS  PubMed  Google Scholar 

  70. Fong, L. & Engleman, E. G. Dendritic cells in cancer immunotherapy. Annu. Rev. Immunol. 18, 245–273 (2000).

    CAS  PubMed  Google Scholar 

  71. Gunzer, M. & Grabbe, S. Dendritic cells in cancer immunotherapy. Crit. Rev. Immunol. 21, 133–145 (2001).

    CAS  PubMed  Google Scholar 

  72. Brossart, P., Wirths, S., Brugger, W. & Kanz, L. Dendritic cells in cancer vaccines. Exp. Hematol. 29, 1247–1255 (2001).

    CAS  PubMed  Google Scholar 

  73. Pardoll, D. M. & Topalian, S. L. The role of CD4+ T cell responses in antitumor immunity. Curr. Opin. Immunol. 10, 588–594 (1998).

    CAS  PubMed  Google Scholar 

  74. Toes, R. E., Ossendorp, F., Offringa, R. & Melief, C. J. CD4 T cells and their role in antitumor immune responses. J. Exp. Med. 189, 753–756 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, R. F. The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Immunol. 22, 269–276 (2001).

    PubMed  Google Scholar 

  76. Janssen, E. M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003).

    CAS  PubMed  Google Scholar 

  77. Sun, J. C. & Bevan, M. J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shedlock, D. J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    CAS  PubMed  Google Scholar 

  79. Kalams, S. A. & Walker, B. D. The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J. Exp. Med. 188, 2199–2204 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zajac, A. J., Murali-Krishna, K., Blattman, J. N. & Ahmed, R. Therapeutic vaccination against chronic viral infection: the importance of cooperation between CD4+ and CD8+ T cells. Curr. Opin. Immunol. 10, 444–449 (1998).

    CAS  PubMed  Google Scholar 

  81. Kaplan, D. H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA 95, 7556–7561 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Qin, Z. & Blankenstein, T. CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN γ receptor expression by nonhematopoietic cells. Immunity 12, 677–686 (2000).

    CAS  PubMed  Google Scholar 

  83. Mumberg, D. et al. CD4+ T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-γ. Proc. Natl Acad. Sci. USA 96, 8633–8638 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Greenberg, P. D., Kern, D. E. & Cheever, M. A. Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1+,2- T cells. Tumor eradication does not require participation of cytotoxic T cells. J. Exp. Med. 161, 1122–1134 (1985).

    CAS  PubMed  Google Scholar 

  85. Hock, H., Dorsch, M., Diamantstein, T. & Blankenstein, T. Interleukin 7 induces CD4+ T cell-dependent tumor rejection. J. Exp. Med. 174, 1291–1298 (1991).

    CAS  PubMed  Google Scholar 

  86. Levitsky, H. I., Lazenby, A., Hayashi, R. J. & Pardoll, D. M. In vivo priming of two distinct antitumor effector populations: the role of MHC class I expression. J. Exp. Med. 179, 1215–1224 (1994).

    CAS  PubMed  Google Scholar 

  87. Hung, K. et al. The central role of CD4+ T cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Marrack, P. et al. T-cell survival. Immunol. Rev. 165, 279–285 (1998).

    CAS  PubMed  Google Scholar 

  89. Sprent, J., Zhang, X., Sun, S. & Tough, D. T-cell turnover in vivo and the role of cytokines. Immunol. Lett. 65, 21–25 (1999).

    CAS  PubMed  Google Scholar 

  90. Hendriks, J. et al. CD27 is required for generation and long-term maintenance of T cell immunity. Nature Immunol. 1, 433–440 (2000).

    CAS  Google Scholar 

  91. Weinberg, A. D., Vella, A. T. & Croft, M. OX-40: life beyond the effector T cell stage. Semin. Immunol. 10, 471–480 (1998).

    CAS  PubMed  Google Scholar 

  92. Kwon, B., Lee, H. W. & Kwon, B. S. New insights into the role of 4-1BB in immune responses: beyond CD8+ T cells. Trends Immunol. 23, 378–380 (2002).

    CAS  PubMed  Google Scholar 

  93. Sullenger, B. A. & Gilboa, E. Emerging clinical applications of RNA. Nature 418, 252–258 (2002).

    CAS  PubMed  Google Scholar 

  94. Alegre, M. L., Frauwirth, K. A. & Thompson, C. B. T-cell regulation by CD28 and CTLA-4. Nature Rev. Immunol. 1, 220–228 (2001).

    CAS  Google Scholar 

  95. Salomon, B. & Bluestone, J. A. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225–252 (2001).

    CAS  PubMed  Google Scholar 

  96. Chambers, C. A., Kuhns, M. S., Egen, J. G. & Allison, J. P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 19, 565–594 (2001).

    CAS  PubMed  Google Scholar 

  97. Carreno, B. M. & Collins, M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu. Rev. Immunol. 20, 29–53 (2002).

    CAS  PubMed  Google Scholar 

  98. Egen, J. G., Kuhns, M. S. & Allison, J. P. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nature Immunol. 3, 611–618 (2002).

    CAS  Google Scholar 

  99. Bass, K. K. & Mastrangelo, M. J. Immunopotentiation with low-dose cyclophosphamide in the active specific immunotherapy of cancer. Cancer Immunol. Immunother. 47, 1–12 (1998).

    CAS  PubMed  Google Scholar 

  100. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    CAS  PubMed  Google Scholar 

  101. Onizuka, S. et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 59, 3128–3133 (1999).

    CAS  PubMed  Google Scholar 

  102. Sutmuller, R. P. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194, 823–832 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med. 7, 1118–1122 (2001).

    CAS  PubMed  Google Scholar 

  104. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Med. 8, 793–800 (2002).

    CAS  PubMed  Google Scholar 

  105. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kusmartsev, S. & Gabrilovich, D. I. Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol. Immunother. 51, 293–298 (2002).

    CAS  PubMed  Google Scholar 

  107. Bronte, V., Serafini, P., Mazzoni, A., Segal, D. M. & Zanovello, P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 24, 302–306 (2003).

    CAS  PubMed  Google Scholar 

  108. Kusmartsev, S. et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 63, 4441–4449 (2003).

    CAS  PubMed  Google Scholar 

  109. van Elsas, A., Hurwitz, A. A. & Allison, J. P. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190, 355–366 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 100, 8372–8377 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hodi, F. S. et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl Acad. Sci. USA 100, 4712–4717 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Surh, C. D. & Sprent, J. Homeostatic T cell proliferation: how far can T cells be activated to self-ligands? J. Exp. Med. 192, F9–F14 (2000).

    CAS  PubMed  Google Scholar 

  113. Ge, Q., Rao, V. P., Cho, B. K., Eisen, H. N. & Chen, J. Dependence of lymphopenia-induced T cell proliferation on the abundance of peptide/MHC epitopes and strength of their interaction with T cell receptors. Proc. Natl Acad. Sci. USA 98, 1728–1733 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kassiotis, G., Zamoyska, R. & Stockinger, B. Involvement of avidity for major histocompatibility complex in homeostasis of naive and memory T cells. J. Exp. Med. 197, 1007–1016 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Borrello, I. et al. Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines. Blood 95, 3011–3019 (2000).

    CAS  PubMed  Google Scholar 

  116. Dummer, W. et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J. Clin. Invest. 110, 185–192 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hu, H. M., Poehlein, C. H., Urba, W. J. & Fox, B. A. Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res. 62, 3914–3919 (2002).

    CAS  PubMed  Google Scholar 

  118. Asavaroengchai, W., Kotera, Y. & Mule, J. J. Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery. Proc. Natl Acad. Sci. USA 99, 931–936 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Naftzger, C. et al. Immune response to a differentiation antigen induced by altered antigen: a study of tumor rejection and autoimmunity. Proc. Natl Acad. Sci. USA 93, 14809–14814 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Overwijk, W. W. et al. Vaccination with a recombinant vaccinia virus encoding a 'self' antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4+ T lymphocytes. Proc. Natl Acad. Sci. USA 96, 2982–2987 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Fong, L., Ruegg, C. L., Brockstedt, D., Engleman, E. G. & Laus, R. Induction of tissue-specific autoimmune prostatitis with prostatic acid phosphatase immunization: implications for immunotherapy of prostate cancer. J. Immunol. 159, 3113–3117 (1997).

    CAS  PubMed  Google Scholar 

  122. Dittel, B. N., Visintin, I., Merchant, R. M. & Janeway, C. A. Jr. Presentation of the self antigen myelin basic protein by dendritic cells leads to experimental autoimmune encephalomyelitis. J. Immunol. 163, 32–39 (1999).

    CAS  PubMed  Google Scholar 

  123. Ludewig, B. et al. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J. Exp. Med. 191, 795–804 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bronte, V. et al. Genetic vaccination with 'self' tyrosinase-related protein 2 causes melanoma eradication but not vitiligo. Cancer Res. 60, 253–258 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Melero, I. et al. Immunological ignorance of an E7-encoded cytolytic T-lymphocyte epitope in transgenic mice expressing the E7 and E6 oncogenes of human papillomavirus type 16. J. Virol. 71, 3998–4004 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hu, J. et al. An evaluation of the potential to use tumor-associated antigens as targets for antitumor T cell therapy using transgenic mice expressing a retroviral tumor antigen in normal lymphoid tissues. J. Exp. Med. 177, 1681–1690 (1993).

    CAS  PubMed  Google Scholar 

  127. Maeurer, M. J. et al. Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J. Clin. Invest. 98, 1633–1641 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Jager, E. et al. Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int. J. Cancer 71, 142–147 (1997).

    CAS  PubMed  Google Scholar 

  129. Yee, C. et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl Acad. Sci. USA 99, 16168–16173 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yewdell, J. W. & Bennink, J. R. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 17, 51–88 (1999).

    CAS  PubMed  Google Scholar 

  131. Albert, M. L. & Darnell, R. B. Paraneoplastic neurological degenerations: keys to tumour immunity. Nature Rev. Cancer 4, 36–44 (2004).

    CAS  Google Scholar 

  132. Roth, J. et al. p53 as a target for cancer vaccines: recombinant canarypox virus vectors expressing p53 protect mice against lethal tumor cell challenge. Proc. Natl Acad. Sci. USA 93, 4781–4786 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Speiser, D. E. et al. Self antigens expressed by solid tumors do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J. Exp. Med. 186, 645–653 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Van den Eynde, B. J. & Morel, S. Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr. Opin. Immunol. 13, 147–153 (2001).

    CAS  PubMed  Google Scholar 

  135. Diefenbach, A., Jensen, E. R., Jamieson, A. M. & Raulet, D. H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Groh, V. et al. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nature Immunol. 2, 255–260 (2001).

    CAS  Google Scholar 

  137. Dvorak, H. F., Nagy, J. A. & Dvorak, A. M. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells 3, 77–85 (1991).

    CAS  PubMed  Google Scholar 

  138. Simon, R. M. et al. Clinical trial designs for the early clinical development of therapeutic cancer vaccines. J. Clin. Oncol. 19, 1848–1854 (2001).

    CAS  PubMed  Google Scholar 

  139. Nair, S. et al. Injection of immature dendritic cells into adjuvant-treated skin obviates the need for ex vivo maturation. J. Immunol. 171, 6275–6282 (2003).

    CAS  PubMed  Google Scholar 

  140. Santulli-Marotto, S., Nair, S. K., Rusconi, C., Sullenger, B. & Gilboa, E. Multivalent RNA aptamers that inhibit ctla-4 and enhance tumor immunity. Cancer Res. 63, 7483–7489 (2003).

    CAS  PubMed  Google Scholar 

  141. Nair, S. et al. Synergy between tumor immunotherapy and antiangiogenic therapy. Blood 102, 964–971 (2003).

    CAS  PubMed  Google Scholar 

  142. Zhao, Y., Boczkowski, D., Nair, S. K. & Gilboa, E. Inhibition of invariant chain expression in dendritic cells presenting endogenous antigens stimulates CD4+ T-cell responses and tumor immunity. Blood 102, 4137–4142 (2003).

    CAS  PubMed  Google Scholar 

  143. Liotta, L. A. & Kohn, E. C. The microenvironment of the tumour-host interface. Nature 411, 375–379 (2001).

    CAS  PubMed  Google Scholar 

  144. Wei, Y. Q. et al. Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nature Med. 6, 1160–1166 (2000).

    CAS  PubMed  Google Scholar 

  145. Li, Y. et al. Active immunization against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and metastasis. J. Exp. Med. 195, 1575–1584 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Niethammer, A. G. et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nature Med. 8, 1369–1375 (2002).

    CAS  PubMed  Google Scholar 

  147. Kerbel, R. S. A cancer therapy resistant to resistance. Nature 390, 335–336 (1997).

    CAS  PubMed  Google Scholar 

  148. Cherrington, J. M., Strawn, L. M. & Shawver, L. K. New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv. Cancer Res. 79, 1–38 (2000).

    CAS  PubMed  Google Scholar 

  149. Nelson, A. R., Fingleton, B., Rothenberg, M. L. & Matrisian, L. M. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol. 18, 1135–1149 (2000).

    CAS  PubMed  Google Scholar 

  150. Kerbel, R. S. et al. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev. 20, 79–86 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Correction: The DOI number given for this article in the May 2004 print issue of Nature Reviews Cancer was wrong. The correct DOI number is: doi:10.1038/nrc1359.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author is the scientific founder and owns stock in Merix Bioscience, a cancer immunotherapy company.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

ovarian cancer

small-cell lung cancer

LocusLink

B7H1

CD25

CD4

CDR2

CTLA4

ERBB2

IFN-α

IFN-γ

IL-10

IL-15

Ly75

MART1

MICA

MICB

PDCD1

SILV

STAT1

TERT

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilboa, E. The promise of cancer vaccines. Nat Rev Cancer 4, 401–411 (2004). https://doi.org/10.1038/nrc1359

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1359

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing