Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic-tunnelling-induced Weyl node annihilation in TaP

Abstract

Weyl nodes are topological objects in three-dimensional metals. Whereas the energy of the lowest Landau band of a conventional Fermi pocket increases with magnetic field due to the zero-point energy (1/2ω), the lowest Landau band of Weyl cones stays at zero energy unless a strong magnetic field couples Weyl fermions of opposite chirality. In the Weyl semimetal TaP, which possesses two types of Weyl nodes (four pairs of W1 and eight pairs of W2 nodes), we observed such a magnetic coupling between the electron pockets arising from the W1 Weyl fermions. As a result, their lowest Landau bands move above the chemical potential, leading to a sharp sign reversal in the Hall resistivity at a specific magnetic field corresponding to the separation in momentum space of the W1 Weyl nodes, . By contrast, annihilation is not observed for the hole pocket because the separation of the W2 Weyl nodes is much larger. These findings reveal the nontrivial topology of Weyl fermions in high-field transport measurements and demonstrate the observation of Weyl node annihilation, which is a unique topological phenomenon associated with Weyl fermions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Weyl Fermions in TaP and its anomaly at high magnetic field.
Figure 2: Mechanism of the gap opening and Weyl node annihilation.
Figure 3: Temperature-dependent magneto-transport of TaP.
Figure 4: Magneto-transport of TaP in tilted magnetic fields.
Figure 5: Conductivity and calculated Landau band structures.
Figure 6: Comparison between a trivial compensated semimetal and a topological Weyl semimetal.

Similar content being viewed by others

References

  1. Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  2. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article  ADS  Google Scholar 

  3. Yang, K., Haldane, F. D. M. & Rezayi, E. H. Wigner crystals in the lowest Landau level at low-filling factors. Phys. Rev. B 64, 081301 (2001).

    Article  ADS  Google Scholar 

  4. Staromlynska, J., Finlayson, D. M. & Stradling, R. A. Shubnikov–de Haas measurements in indium antimonide. J. Phys. C 16, 6373–6386 (1983).

    Article  ADS  Google Scholar 

  5. Zheng, G. et al. Transport evidence for the three-dimensional Dirac semimetal phase in ZrTe5 . Phys. Rev. B 93, 115414 (2016).

    Article  ADS  Google Scholar 

  6. Physics in High Magnetic Fields (eds Chikazumiand, S. & Miura, N.) (Springer, 1981).

  7. Behnia, K., Balicas, L. & Kopelevich, Y. Signatures of electron fractionalization in ultraquantum bismuth. Science 317, 1729–1731 (2007).

    Article  ADS  Google Scholar 

  8. Li, L. et al. Phase transitions of Dirac electrons in bismuth. Science 321, 547–550 (2008).

    Article  ADS  Google Scholar 

  9. Zhang, C.-L. et al. Ultraquantum magnetoresistance in single-crystalline β-Ag2Se. Preprint at http://arxiv.org/abs/1502.02324 (2015).

  10. Iye, Y. et al. High-magnetic-field electronic phase transition in graphite observed by magnetoresistance anomaly. Phys. Rev. B 25, 5478–5485 (1982).

    Article  ADS  Google Scholar 

  11. Fauqué, B. et al. Two phase transitions induced by a magnetic field in graphite. Phys. Rev. Lett. 110, 266601 (2013).

    Article  ADS  Google Scholar 

  12. Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

    Article  ADS  Google Scholar 

  13. Fauqué, B., Vignolle, B., Proust, C., Issi, J.-P. & Behnia, K. Electronic instability in bismuth far beyond the quantum limit. New J. Phys. 11, 113012 (2009).

    Article  ADS  Google Scholar 

  14. Zhu, Z. et al. Emptying Dirac valleys in bismuth by magnetic field. Preprint at http://arxiv.org/abs/1608.06199 (2016).

  15. Weyl, H. Elektron und gravitation. I. Z. Phys. 56, 330–352 (1929).

    Article  ADS  Google Scholar 

  16. Herring, C. Accidental degeneracy in the energy bands of crystals. Phys. Rev. 52, 365–373 (1937).

    Article  ADS  Google Scholar 

  17. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    Article  ADS  Google Scholar 

  18. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  19. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  20. Huang, S. M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    Article  ADS  Google Scholar 

  21. Weng, H. et al. Weyl semimetal phase in non-centrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  22. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  ADS  Google Scholar 

  23. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  24. Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

    Article  Google Scholar 

  25. Zhang, C.-L. et al. Electron scattering in tantalum monoarsenide. Phys. Rev. B 95, 085202 (2017).

    Article  ADS  Google Scholar 

  26. Xu, S.-Y. et al. Experimental discovery of a topological Weyl semimetal state in TaP. Sci. Adv. 1, e1501092 (2015).

    Article  ADS  Google Scholar 

  27. Zhang, C.-L. et al. Large magnetoresistance over an extended temperature regime in monophosphides of tantalum and niobium. Phys. Rev. B 92, 041203(R) (2015).

    Article  ADS  Google Scholar 

  28. Abrikosov, A. A. Quantum magnetoresistance. Phys. Rev. B 58, 2788–2794 (1998).

    Article  ADS  Google Scholar 

  29. Wang, C. M., Lu, H. Z. & Shen, S. Q. Anomalous phase shift of quantum oscillations in 3D topological semimetals. Phys. Rev. Lett. 117, 077201 (2016).

    Article  ADS  Google Scholar 

  30. Lu, H. Z., Zhang, S. B. & Shen, S. Q. High-field magnetoconductivity of topological semimetals with short-range potential. Phys. Rev. B 92, 045203 (2015).

    Article  ADS  Google Scholar 

  31. Cohen, M. H. & Falicov, L. M. Magnetic breakdown in crystals. Phys. Rev. Lett. 7, 231–233 (1961).

    Article  ADS  Google Scholar 

  32. Sasaki, T., Sato, H. & Toyota, N. Magnetic breakdown effect in organic superconductor κ-(BEDT-TTF)2Cu(NCS)2 . Solid State Commun. 76, 507–510 (1990).

    Article  ADS  Google Scholar 

  33. Chen, C.-Z. et al. Disorder and metal-insulator transitions in Weyl semimetals. Phys. Rev. Lett. 115, 246603 (2015).

    Article  ADS  Google Scholar 

  34. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  35. Strocov, V. N. et al. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications. J. Synchrotron Radiat. 21, 32–44 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. R. Du, F. Wang, Q. Ma and H. Yao for valuable discussions on the physics and comments on our draft. J.W. acknowledges technical support from Y. Kohama at ISSP, the University of Tokyo. C.-L.Z. thanks Q. Guo for his assistance in high-field measurements. S.J. is supported by National Basic Research Program of China (Grant Nos. 2014CB239302 and 2013CB921901) and by the Opening Project of Wuhan National High Magnetic Field Center (Grant No.PHMFF2015395), Huazhong University of Science and Technology. H.L. acknowledges the Singapore National Research Foundation for support under NRF Award No. NRF-NRFF2013-03. S.-M.H. is supported by the Ministry of Science and Technology in Taiwan under Grant No. MOST105-2112-M-110-014-MY3. C.M.W. is supported by National Natural Science Foundation of China under Grant No. 11474005. H.-Z.L. is supported by Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06D348), the National Key R&D Program (Grant No. 2016YFA0301700), and National Natural Science Foundation of China (Grant No. 11574127). The work at Princeton is supported by the National Science Foundation, Division of Materials Research, under Grants No. NSF-DMR-1507585 and No. NSF-DMR-1006492 and by the Gordon and Betty Moore Foundation through Grant GBMF4547 (Hasan). The National Magnet Laboratory is supported by the National Science Foundation Cooperative Agreement no. DMR-1157490, the State of Florida, and the US Department of Energy. Work at Los Alamos National Laboratory is performed under the auspices of the DOE and was supported by the DOE/Office of Science Project Complex Electronic Materials.

Author information

Authors and Affiliations

Authors

Contributions

C.-L.Z. and S.J. designed the experiment. C.-L.Z. performed all electrical transport experiments with help from Z.L., C.G., H.Lu, Y.F., L.L., C.Z., J.Z., J.W. and S.J.; S.-Y.X. conducted ARPES experiments with assistance from M.Z.H.; C.-L.Z., C.G., H.Lu and Y.F. grew the single-crystal samples; C.-C.L., G.C., S.-M.H., C.-H.H. and H.Lin performed first-principles band structure calculations; C.M.W., Z.Z.D. and H.-Z.L. did all theoretical simulations and part of theoretical analyses; Z.Z.D. and H.-Z.L. proposed the two-band model for trivial and Weyl semimetals. H.Liu and X.-C.X. contributed the Landau band indexation. S.-M.H. also performed Landau level simulations. T.N. performed the major part of theoretical analyses and gave the k p model. S.-Y.X., C.-L.Z., C.M.W., H.-Z.L., T.N. and S.J. wrote the paper. S.-Y.X. and S.J. were responsible for the overall direction, planning and integration among different research units.

Corresponding authors

Correspondence to Hai-Zhou Lu, Junfeng Wang or Shuang Jia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CL., Xu, SY., Wang, C. et al. Magnetic-tunnelling-induced Weyl node annihilation in TaP. Nature Phys 13, 979–986 (2017). https://doi.org/10.1038/nphys4183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing