Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic-scale engineering of electrodes for single-molecule contacts

Abstract

The transport of charge through a conducting material depends on the intrinsic ability of the material to conduct current and on the charge injection efficiency at the contacts between the conductor and the electrodes carrying current to and from the material1,2,3. According to theoretical considerations4, this concept remains valid down to the limit of single-molecule junctions5. Exploring this limit in experiments requires atomic-scale control of the junction geometry. Here we present a method for probing the current through a single C60 molecule while changing, one by one, the number of atoms in the electrode that are in contact with the molecule. We show quantitatively that the contact geometry has a strong influence on the conductance. We also find a crossover from a regime in which the conductance is limited by charge injection at the contact to a regime in which the conductance is limited by scattering at the molecule. Thus, the concepts of ‘good’ and ‘bad’ contacts, commonly used in macro- and mesoscopic physics, can also be applied at the molecular scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STM images of atomically engineered electrodes on Cu(111).
Figure 2: Transport measurements of a single C60 molecule in contact with an increasing number of atoms.
Figure 3: Conductances at contact between a single C60 molecule and clusters of copper atoms.
Figure 4: Scattering at the contact between a single C60 molecule and clusters of copper atoms.

Similar content being viewed by others

References

  1. Scott, J. C. Metal–organic interface and charge injection in organic electronic devices. J. Vac. Sci. Technol. A 21, 521–531 (2003).

    Article  CAS  Google Scholar 

  2. Nemec, N., Tom´anek, D. & Cuniberti, G. Contact dependence of carrier injection in carbon nanotubes: an ab initio study. Phys. Rev. Lett. 96, 076802 (2006).

    Article  Google Scholar 

  3. Basch, H., Cohen, R. & Ratner, M. A. Interface geometry and molecular junction conductance: geometric fluctuation and stochastic switching. Nano Lett. 5, 1668–1675 (2005).

    Article  CAS  Google Scholar 

  4. Xue, Y. & Ratner, M. A. Microscopic study of electrical transport through individual molecules with metallic contacts. ii. effect of the interface structure. Phys. Rev. B 68, 115407 (2003).

    Article  Google Scholar 

  5. Moth-Poulsen, K. & Bjørnholm, T. Molecular electronics with single molecules in solid-state devices. Nature Nanotech. 4, 551–556 (2009).

    Article  CAS  Google Scholar 

  6. Ho Choi, S., Kim, B. & Frisbie, C. D. Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008).

    Article  Google Scholar 

  7. Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nature Nanotech. 4, 230–234 (2009).

    Article  CAS  Google Scholar 

  8. Joachim, C., Gimzewski, J. K., Schlittler, R. R. & Chavy, C. Electronic transparence of a single C60 molecule. Phys. Rev. Lett. 74, 2102–2105 (1995).

    Article  CAS  Google Scholar 

  9. Schulze, G. et al. Resonant electron heating and molecular phonon cooling in single C60 junctions. Phys. Rev. Lett. 100, 136801 (2008).

    Article  CAS  Google Scholar 

  10. Néel, N., Kröger, J., Limot, L. & Berndt, R. Conductance of oriented C60 molecules. Nano Lett. 8, 1291–1295 (2008).

    Article  Google Scholar 

  11. Temirov, R., Lassise, A., Anders, F. B. & Tautz, F. S. Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19, 065401 (2008).

    Article  CAS  Google Scholar 

  12. Wang, Y. F. et al. Atomic-scale control of electron transport through single molecules Phys. Rev. Lett. 104, 176802 (2010).

    Article  CAS  Google Scholar 

  13. Martin, C. A. et al. Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 130, 13198–13199 (2008).

    Article  CAS  Google Scholar 

  14. Limot, L., Kroger, J., Berndt, R., Garcia-Lekue, A. & Hofer, W. A. Atom transfer and single-adatom contacts. Phys. Rev. Lett. 94, 126102 (2005).

    Article  CAS  Google Scholar 

  15. Repp, J., Meyer, G., Rieder, K.-H. & Hyldgaard, P. Site determination and thermally assisted tunneling in homogenous nucleation. Phys. Rev. Lett. 91, 206102 (2003).

    Article  Google Scholar 

  16. Fölsch, S., Hyldgaard, P., Koch, R. & Ploog, K. H. Quantum confinement in monatomic Cu chains on Cu(111). Phys. Rev. Lett. 92, 056803 (2004).

    Article  Google Scholar 

  17. Schull, G., Frederiksen, T., Brandbyge, M. & Berndt, R. Passing current through touching molecules. Phys. Rev. Lett. 103, 206803 (2009).

    Article  Google Scholar 

  18. Néel, N. et al. Controlled contact to a C60 molecule. Phys. Rev. Lett. 98, 065502 (2007).

    Article  Google Scholar 

  19. Scheer, E. et al. The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394, 154–157 (1998).

    Article  CAS  Google Scholar 

  20. Paulsson, M. & Brandbyge, M. Transmission eigenchannels from nonequilibrium Green's functions. Phys. Rev. B 76, 115117 (2007).

    Article  Google Scholar 

  21. Soler, J. M. et al. The SIESTA method for ab initio order-n materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    Article  CAS  Google Scholar 

  22. Brandbyge, M., Mozos, J. L., Ordejon, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 677), the Schleswig–Holstein Fonds, the Ministerio de Cienciae Innovacion (FIS2007-6671) and the Basque Department of Education (IT-366-07).

Author information

Authors and Affiliations

Authors

Contributions

G.S. and R.B. provided the experimental concept. G.S. performed the STM and contact experiments. T.F. performed the first-principles calculations, and analysis was carried out with A.A. and D.S.P. All authors contibuted to the discussion of the results and preparation of the manuscript.

Corresponding authors

Correspondence to Guillaume Schull or Thomas Frederiksen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 889 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schull, G., Frederiksen, T., Arnau, A. et al. Atomic-scale engineering of electrodes for single-molecule contacts. Nature Nanotech 6, 23–27 (2011). https://doi.org/10.1038/nnano.2010.215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing