Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene

Abstract

Cholinergic motor neurons are defined by the coexpression of a battery of genes encoding proteins that act sequentially to synthesize, package and degrade acetylcholine and reuptake its breakdown product, choline. How expression of these critical motor neuron identity determinants is controlled and coordinated is not understood. We show here that, in the nematode Caenorhabditis elegans, all members of the cholinergic gene battery, as well as many other markers of terminal motor neuron fate, are co-regulated by a shared cis-regulatory signature and a common trans-acting factor, the phylogenetically conserved COE (Collier, Olf, EBF)-type transcription factor UNC-3. UNC-3 initiated and maintained expression of cholinergic fate markers and was sufficient to induce cholinergic fate in other neuron types. UNC-3 furthermore operated in negative feedforward loops to induce the expression of transcription factors that repress individual UNC-3-induced terminal fate markers, resulting in diversification of motor neuron differentiation programs in specific motor neuron subtypes. A chordate ortholog of UNC-3, Ciona intestinalis COE, was also both required and sufficient for inducing a cholinergic fate. Thus, UNC-3 is a terminal selector for cholinergic motor neuron differentiation whose function is conserved across phylogeny.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: unc-3 is required for expression of the cholinergic gene battery.
Figure 2: unc-3 affects A- and B-type motor neuron features but not pan-neuronal specification.
Figure 3: unc-3 is sufficient to induce cholinergic markers in other neuron types.
Figure 4: UNC-3 targets are co-regulated through consensus COE motifs.
Figure 5: unc-3 expression is required through the life of the worm.
Figure 6: Gene regulatory factors are downstream targets of unc-3.
Figure 7: The function of UNC-3 is conserved across phylogeny.

Similar content being viewed by others

References

  1. Rand, J.B.A. Acetylcholine. WormBook doi:10.1895/wormbook.1.131.1, 1–21 (2007).

  2. Langer, S.Z. 25 years since the discovery of presynaptic receptors: present knowledge and future perspectives. Trends Pharmacol. Sci. 18, 95–99 (1997).

    Article  CAS  Google Scholar 

  3. Von Stetina, S.E., Treinin, M. & Miller, D.M. The motor circuit. Int. Rev. Neurobiol. 69, 125–167 (2006).

    Article  CAS  Google Scholar 

  4. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the ventral nerve cord of Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 275, 327–348 (1976).

    Article  CAS  Google Scholar 

  5. Alfonso, A., Grundahl, K., Duerr, J.S., Han, H.P. & Rand, J.B. The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science 261, 617–619 (1993).

    Article  CAS  Google Scholar 

  6. Okuda, T. et al. Identification and characterization of the high-affinity choline transporter. Nat. Neurosci. 3, 120–125 (2000).

    Article  CAS  Google Scholar 

  7. Fox, R.M. et al. A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genomics 6, 42 (2005).

    Article  Google Scholar 

  8. Hallam, S., Singer, E., Waring, D. & Jin, Y. The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. Development 127, 4239–4252 (2000).

    CAS  PubMed  Google Scholar 

  9. Winnier, A.R. et al. UNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans. Genes Dev. 13, 2774–2786 (1999).

    Article  CAS  Google Scholar 

  10. Prasad, B., Karakuzu, O., Reed, R.R. & Cameron, S. unc-3-dependent repression of specific motor neuron fates in Caenorhabditis elegans. Dev. Biol. 323, 207–215 (2008).

    Article  CAS  Google Scholar 

  11. Prasad, B.C. et al. unc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. Development 125, 1561–1568 (1998).

    CAS  PubMed  Google Scholar 

  12. Lickteig, K.M. et al. Regulation of neurotransmitter vesicles by the homeodomain protein UNC- 4 and its transcriptional corepressor UNC-37/groucho in Caenorhabditis elegans cholinergic motor neurons. J. Neurosci. 21, 2001–2014 (2001).

    Article  CAS  Google Scholar 

  13. Combes, D., Fedon, Y., Toutant, J.P. & Arpagaus, M. Multiple ace genes encoding acetylcholinesterases of Caenorhabditis elegans have distinct tissue expression. Eur. J. Neurosci. 18, 497–512 (2003).

    Article  Google Scholar 

  14. Lanjuin, A., VanHoven, M.K., Bargmann, C.I., Thompson, J.K. & Sengupta, P. Otx/otd homeobox genes specify distinct sensory neuron identities in C. elegans. Dev. Cell 5, 621–633 (2003).

    Article  CAS  Google Scholar 

  15. Jin, Y., Hoskins, R. & Horvitz, H.R. Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 372, 780–783 (1994).

    Article  CAS  Google Scholar 

  16. Kim, K., Colosimo, M.E., Yeung, H. & Sengupta, P. The UNC-3 Olf/EBF protein represses alternate neuronal programs to specify chemosensory neuron identity. Dev. Biol. 286, 136–148 (2005).

    Article  CAS  Google Scholar 

  17. Treiber, T. et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin. Immunity 32, 714–725 (2010).

    Article  CAS  Google Scholar 

  18. Wang, M.M. & Reed, R.R. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364, 121–126 (1993).

    Article  CAS  Google Scholar 

  19. Wang, S.S., Tsai, R.Y. & Reed, R.R. The characterization of the Olf-1/EBF-like HLH transcription factor family: implications in olfactory gene regulation and neuronal development. J. Neurosci. 17, 4149–4158 (1997).

    Article  CAS  Google Scholar 

  20. O′Meara, M.M. et al. Cis-regulatory mutations in the Caenorhabditis elegans homeobox gene locus cog-1 affect neuronal development. Genetics 181, 1679–1686 (2009).

    Article  Google Scholar 

  21. Von Stetina, S.E. et al. Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol. 8, R135 (2007).

    Article  Google Scholar 

  22. Bigelow, H.R., Wenick, A.S., Wong, A. & Hobert, O. CisOrtho: a program pipeline for genome-wide identification of transcription factor target genes using phylogenetic footprinting. BMC Bioinformatics 5, 27 (2004).

    Article  Google Scholar 

  23. Kurima, K., Yang, Y., Sorber, K. & Griffith, A.J. Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis. Genomics 82, 300–308 (2003).

    Article  CAS  Google Scholar 

  24. Fire, A., Harrison, S.W. & Dixon, D. A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93, 189–198 (1990).

    Article  CAS  Google Scholar 

  25. Esmaeili, B., Ross, J.M., Neades, C., Miller, D.M. III & Ahringer, J. The C. elegans even-skipped homologue, vab-7, specifies DB motoneurone identity and axon trajectory. Development 129, 853–862 (2002).

    CAS  PubMed  Google Scholar 

  26. Von Stetina, S.E. et al. UNC-4 represses CEH-12/HB9 to specify synaptic inputs to VA motor neurons in C. elegans. Genes Dev. 21, 332–346 (2007).

    Article  CAS  Google Scholar 

  27. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman & Hall/CRC, 2006).

  28. Altun-Gultekin, Z. et al. A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. Development 128, 1951–1969 (2001).

    CAS  PubMed  Google Scholar 

  29. Wenick, A.S. & Hobert, O. Genomic cis-regulatory architecture and trans-acting regulators of a single interneuron-specific gene battery in C. elegans. Dev. Cell 6, 757–770 (2004).

    Article  CAS  Google Scholar 

  30. Corradi, A. et al. Hypogonadotropic hypogonadism and peripheral neuropathy in Ebf2-null mice. Development 130, 401–410 (2003).

    Article  CAS  Google Scholar 

  31. Garel, S. et al. Family of Ebf/Olf-1-related genes potentially involved in neuronal differentiation and regional specification in the central nervous system. Dev. Dyn. 210, 191–205 (1997).

    Article  CAS  Google Scholar 

  32. Horie, T., Nakagawa, M., Sasakura, Y., Kusakabe, T.G. & Tsuda, M. Simple motor system of the ascidian larva: neuronal complex comprising putative cholinergic and GABAergic/glycinergic neurons. Zoolog. Sci. 27, 181–190 (2010).

    Article  CAS  Google Scholar 

  33. Daburon, V. et al. The metazoan history of the COE transcription factors. Selection of a variant HLH motif by mandatory inclusion of a duplicated exon in vertebrates. BMC Evol. Biol. 8, 131 (2008).

    Article  Google Scholar 

  34. Yoshida, R. et al. Identification of neuron-specific promoters in Ciona intestinalis. Genesis 39, 130–140 (2004).

    Article  CAS  Google Scholar 

  35. Stolfi, A. et al. Early chordate origins of the vertebrate second heart field. Science 329, 565–568 (2010).

    Article  CAS  Google Scholar 

  36. Russo, M.T. et al. Regulatory elements controlling Ci-msxb tissue-specific expression during Ciona intestinalis embryonic development. Dev. Biol. 267, 517–528 (2004).

    Article  CAS  Google Scholar 

  37. Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  CAS  Google Scholar 

  38. Shen-Orr, S.S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002).

    Article  CAS  Google Scholar 

  39. Dalla Torre di Sanguinetto, S.A., Dasen, J.S. & Arber, S. Transcriptional mechanisms controlling motor neuron diversity and connectivity. Curr. Opin. Neurobiol. 18, 36–43 (2008).

    Article  CAS  Google Scholar 

  40. Naciff, J.M., Behbehani, M.M., Misawa, H. & Dedman, J.R. Identification and transgenic analysis of a murine promoter that targets cholinergic neuron expression. J. Neurochem. 72, 17–28 (1999).

    Article  CAS  Google Scholar 

  41. Hobert, O. Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. Proc. Natl. Acad. Sci. USA 105, 20067–20071 (2008).

    Article  CAS  Google Scholar 

  42. Hobert, O., Carrera, I. & Stefanakis, N. The molecular and gene regulatory signature of a neuron. Trends Neurosci. 33, 435–445 (2010).

    Article  CAS  Google Scholar 

  43. Davidson, B., Shi, W., Beh, J., Christiaen, L. & Levine, M. FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev. 20, 2728–2738 (2006).

    Article  CAS  Google Scholar 

  44. Stolfi, A. & Levine, M. Neuronal subtype specification in the spinal cord of a protovertebrate. Development 138, 995–1004 (2011).

    Article  CAS  Google Scholar 

  45. Tursun, B., Cochella, L., Carrera, I. & Hobert, O. A toolkit and robust pipeline for the generation of fosmid-based reporter genes in C. elegans. PLoS ONE 4, e4625 (2009).

    Article  Google Scholar 

  46. Hobert, O. PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32, 728–730 (2002).

    Article  CAS  Google Scholar 

  47. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using microManager. Curr. Protoc. Mol. Biol.. Ch. 14, Unit 14 20 (2010).

  48. Workman, C.T. et al. enoLOGOS: a versatile web tool for energy normalized sequence logos. Nucleic Acids Res. 33, W389–W392 (2005).

    Article  CAS  Google Scholar 

  49. Christiaen, L., Wagner, E., Shi, W. & Levine, M. The sea squirt Ciona intestinalis. Cold Spring Harb. Protoc. 2009, pdb emo138 (2009).

Download references

Acknowledgements

We thank Q. Chen for expert assistance in generating transgenic strains; P. Sengupta (Brandeis University) for providing plasmids; many colleagues in the C. elegans community, particularly D. Miller (Vanderbilt University), for providing reporter strains; D. Wu and G. Minevich for bioinformatic analysis; and J. Rand and members of the Hobert laboratory for comments on the manuscript. We are grateful to Caenorhabditis Genetics Center (University of Minnesota) for providing strains. This work was funded by the Muscle Dystrophy Association and the US National Institutes of Health (R01NS039996; R01NS050266). O.H. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

P.K. performed the C. elegans experiments under supervision of O.H. A.S. performed the C. intestinalis experiments under supervision of M.L. All authors participated in writing this paper.

Corresponding authors

Correspondence to Paschalis Kratsios or Oliver Hobert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Tables 1–5 (PDF 9695 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kratsios, P., Stolfi, A., Levine, M. et al. Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nat Neurosci 15, 205–214 (2012). https://doi.org/10.1038/nn.2989

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2989

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing