Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-throughput fingerprinting of human pluripotent stem cell fate responses and lineage bias

Abstract

Populations of cells create local environments that lead to emergent heterogeneity. This is particularly evident with human pluripotent stem cells (hPSCs): microenvironmental heterogeneity limits hPSC cell fate control. We developed a high-throughput platform to screen hPSCs in configurable microenvironments in which we optimized colony size, cell density and other parameters to achieve rapid and robust cell fate responses to exogenous cues. We used this platform to perform single-cell protein expression profiling, revealing that Oct4 and Sox2 costaining discriminates pluripotent, neuroectoderm, primitive streak and extraembryonic cell fates. We applied this Oct4-Sox2 code to analyze dose responses of 27 developmental factors to obtain lineage-specific concentration optima and to quantify cell line–specific endogenous signaling pathway activation and differentiation bias. We demonstrated that short-term responses predict definitive endoderm induction efficiency and can be used to rescue differentiation of cell lines reticent to cardiac induction. This platform will facilitate high-throughput hPSC-based screening and quantification of lineage-induction bias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 96μCP platform.
Figure 2: Single-cell protein profiling reveals Oct4 and Sox2 mark early cell fates.
Figure 3: Characterization of factors modulating cell fate choices.
Figure 4: Quantitative assessment of cell line–specific endogenous signaling and differentiation.

Similar content being viewed by others

References

  1. Levenstein, M.E. et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24, 568–574 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Bendall, S.C. et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448, 1015–1021 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Vallier, L., Alexander, M. & Pedersen, R.A. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118, 4495–4509 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Avery, S., Zafarana, G., Gokhale, P.J. & Andrews, P.W. The role of SMAD4 in human embryonic stem cell self-renewal and stem cell fate. Stem Cells 28, 863–873 (2010).

    CAS  PubMed  Google Scholar 

  5. Amit, M. et al. Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat. Protoc. 6, 572–579 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Dahéron, L. et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22, 770–778 (2004).

    Article  PubMed  Google Scholar 

  7. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3specific inhibitor. Nat. Med. 10, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Dravid, G. et al. Defining the role of Wnt/β-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 23, 1489–1501 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. International Stem Cell Initiative Consortium. et al. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cell Dev. Biol. Anim. 46, 247–258 (2010).

  10. Peerani, R. et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 26, 4744–4755 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K. & Chen, C.S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Maherali, N. & Hochedlinger, K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3, 595–605 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Chambers, S.M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cai, J. et al. Generation of homogeneous PDX1+ pancreatic progenitors from human ES cell-derived endoderm cells. J. Mol. Cell Biol. 2, 50–60 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Hwang, Y.S. et al. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. USA 106, 16978–16983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun, N. et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci. Transl. Med. 4, 130ra147 (2012).

    Article  Google Scholar 

  17. Xu, C. et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971–974 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, L. et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110, 4111–4119 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, R.H. et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20, 1261–1264 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Pera, M.F. et al. Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J. Cell Sci. 117, 1269–1280 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Vallier, L. et al. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS ONE 4, e6082 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith, J.R. et al. Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev. Biol. 313, 107–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Vallier, L., Reynolds, D. & Pedersen, R.A. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol. 275, 403–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Paige, S.L. et al. Endogenous Wnt/β-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS ONE 5, e11134 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vallier, L. et al. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 136, 1339–1349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lowell, S., Benchoua, A., Heavey, B. & Smith, A.G. Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol. 4, e121 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mossman, A.K., Sourris, K., Ng, E., Stanley, E.G. & Elefanty, A.G. Mixl1 and Oct4 proteins are transiently co-expressed in differentiating mouse and human embryonic stem cells. Stem Cells Dev. 14, 656–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Chng, Z., Teo, A., Pedersen, R.A. & Vallier, L. SIP1 mediates cell-fate decisions between neuroectoderm and mesendoderm in human pluripotent stem cells. Cell Stem Cell 6, 59–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. James, D., Levine, A.J., Besser, D. & Hemmati-Brivanlou, A. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132, 1273–1282 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, G. et al. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem. Biophys. Res. Commun. 330, 934–942 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Gonzalez, R. et al. Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc. Natl. Acad. Sci. USA 107, 3552–3557 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Greber, B. et al. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell 6, 215–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Vallier, L. et al. Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem Cells 27, 2655–2666 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Yu, P.B. et al. BMP type I receptor inhibition reduces heterotopic ossification. Nat. Med. 14, 1363–1369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nostro, M.C. et al. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138, 861–871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26, 313–315 (2008).

    CAS  PubMed  Google Scholar 

  38. Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Kattman, S.J. et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8, 228–240 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Bock, C. et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144, 439–452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Snijder, B. et al. Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461, 520–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Hussein, S.M. et al. Copy number variation and selection during reprogramming to pluripotency. Nature 471, 58–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Amps, K. et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat. Biotechnol. 29, 1132–1144 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Hotta, A. et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat. Methods 6, 370–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Cheung, A.Y. et al. Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum. Mol. Genet. 20, 2103–2115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peerani, R., Bauwens, C., Kumacheva, E. & Zandstra, P.W. Patterning mouse and human embryonic stem cells using micro-contact printing. Methods Mol. Biol. 482, 21–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Seki, T., Yuasa, S. & Fukuda, K. Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus. Nat. Protoc. 7, 718–728 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Bauwens, C.L. et al. Geometric control of cardiomyogenic induction in human pluripotent stem cells. Tissue Eng. Part A 17, 1901–1909 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Rezania, A. et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61, 2016–2029 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is funded by the Canadian Institutes of Health Research (CIHR) (P.W.Z.). E.J.P.N. is supported by a CIHR Frederick Banting and Charles Best Canada Graduate Scholarships Doctoral Award. P.B.L. is supported by a Heart & Stroke Richard Lewar Centre of Excellence Studentship award. S.S. is supported by a Vanier Canada Graduate Scholarship. P.W.Z. is supported as the Canada Research Chair in Stem Cell Bioengineering. We thank S. Foster for illustrating Supplementary Figure 1. Ligands were provided in kind by the International Stem Cell Initiative. We thank G. Keller (McEwen Centre for Regenerative Medicine/University Health Network), M. Radisic (University of Toronto), A. Nagy (Samuel Lunenfeld Research Institute), D. Melton (Harvard University), A. Elefanty (Monash University) and J. Ellis (The Hospital for Sick Children) for providing cell lines. We thank P. Andrews and M. Pera for helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

E.J.P.N. designed, performed and analyzed most experiments. J.E.E.O. assisted with immunocytochemistry and software development. P.B.L. performed cardiac induction experiments. S.S. created hiPSC lines. T.Y. performed endoderm induction experiments. M.M.A. and T.Y. provided cell culture support. S.K.W.O. provided editorial input on the manuscript. E.J.P.N. and P.W.Z. designed the project and wrote the manuscript.

Corresponding author

Correspondence to Peter W Zandstra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Table 1 and Supplementary Results (PDF 1736 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazareth, E., Ostblom, J., Lücker, P. et al. High-throughput fingerprinting of human pluripotent stem cell fate responses and lineage bias. Nat Methods 10, 1225–1231 (2013). https://doi.org/10.1038/nmeth.2684

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2684

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing