Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Probing cellular events, one quantum dot at a time

Abstract

Monitoring the behavior of single molecules in living cells is a powerful approach to investigate the details of cellular processes. Owing to their optical, chemical and biofunctional properties, semiconductor quantum dot (QD) probes promise to be tools of choice in this endeavor. Here we review recent advances that allow ever more controlled experiments at the single-nanoparticle level in live cells. Several examples, related to membrane dynamics, cell signaling or intracellular transport, illustrate how single QD tracking can be readily used to decipher complex biological processes and address key concepts that underlie cellular organization and dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and properties of QD probes.
Figure 2: Processing and analysis of SQT data.
Figure 3: Studying membrane dynamics and organization by SQT.
Figure 4: Synaptic biology with QDs.
Figure 5: Intracellular tracking of QDs.

Similar content being viewed by others

References

  1. Saxton, M.J. & Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    CAS  PubMed  Google Scholar 

  4. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003). First paper describing QD use to track single receptors in live cells.

    CAS  PubMed  Google Scholar 

  5. Walter, N.G., Huang, C.Y., Manzo, A.J. & Sobhy, M.A. Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat. Methods 5, 475–489 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Selvin, P.R. & Ha, T. Single-molecule techniques: a laboratory manual (Cold Spring Harbor Laboratory Press, 2008).

  7. Wieser, S. & Schutz, G.J. Tracking single molecules in the live cell plasma membrane-do's and don't's. Methods 46, 131–140 (2008).

    CAS  PubMed  Google Scholar 

  8. Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999).

    CAS  PubMed  Google Scholar 

  9. Lord, S.J., Lee, H.L. & Moerner, W.E. Single-molecule spectroscopy and imaging of biomolecules in living cells. Anal. Chem. advance online publication, doi:10.1021/ac9024889 (17 February 2010).

  10. Haggie, P.M., Kim, J.K., Lukacs, G.L. & Verkman, A.S. Tracking of quantum dot-labeled CFTR shows near immobilization by C-terminal PDZ interactions. Mol. Biol. Cell 17, 4937–4945 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008).

    CAS  PubMed  Google Scholar 

  12. Pons, T. & Mattoussi, H. Investigating biological processes at the single molecule level using luminescent quantum dots. Ann. Biomed. Eng. 37, 1934–1959 (2009).

    PubMed  Google Scholar 

  13. Stefani, F.D., Hoogenboom, J.P. & Barkai, E. Beyond quantum jumps: blinking nanoscale light emitters. Phys. Today 62, 34–39 (2009).

    CAS  Google Scholar 

  14. Alivisatos, A.P. Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933–937 (1996).

    CAS  Google Scholar 

  15. Reiss, P., Protiere, M. & Li, L. Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009).

    CAS  PubMed  Google Scholar 

  16. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005). A review of QD properties and applications for biological imaging.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bentzen, E.L. et al. Surface modification to reduce nonspecific binding of quantum dots in live cell assays. Bioconjug. Chem. 16, 1488–1494 (2005).

    CAS  PubMed  Google Scholar 

  18. Liu, W. et al. Compact biocompatible quantum dots functionalized for Cellular imaging. J. Am. Chem. Soc. 130, 1274–1284 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Doose, S., Tsay, J.M., Pinaud, F. & Weiss, S. Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy. Anal. Chem. 77, 2235–2242 (2005).

    CAS  PubMed  Google Scholar 

  20. Howarth, M. et al. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods 5, 397–399 (2008). With reference 40, describes clever engineering of small and monofunctional QDs, a substantial improvement for targeting and tracking single membrane proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Groc, L. et al. Surface trafficking of neurotransmitter receptor: comparison between single-molecule/quantum dot strategies. J. Neurosci. 27, 12433–12437 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nechyporuk-Zloy, V., Dieterich, P., Oberleithner, H., Stock, C. & Schwab, A. Dynamics of single potassium channel proteins in the plasma membrane of migrating cells. Am. J. Physiol. Cell Physiol. 294, C1096–C1102 (2008).

    CAS  PubMed  Google Scholar 

  23. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002).

    CAS  PubMed  Google Scholar 

  24. Roullier, V. et al. High-affinity labeling and tracking of individual histidine-tagged proteins in live cells using Ni2+ Tris-nitrilotriacetic acid quantum dot conjugates. Nano Lett. 9, 1228–1234 (2009).

    CAS  PubMed  Google Scholar 

  25. Lees, E.E., Nguyen, T.L., Clayton, A.H.A., Mulvaney, P. & Muir, B.W. The preparation of colloidally stable, water-soluble, biocompatible, semiconductor nanocrystals with a small hydrodynamic diameter. Acs Nano 3, 1121–1128 (2009).

    CAS  PubMed  Google Scholar 

  26. Murcia, M.J., Minner, D.E., Mustata, G.M., Ritchie, K. & Naumann, C.A. Design of quantum dot-conjugated lipids for long-term, high-speed tracking experiments on cell surfaces. J. Am. Chem. Soc. 130, 15054–15062 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Aldana, J., Wang, Y.A. & Peng, X.G. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844–8850 (2001).

    CAS  PubMed  Google Scholar 

  28. Susumu, K. et al. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J. Am. Chem. Soc. 129, 13987–13996 (2007).

    CAS  PubMed  Google Scholar 

  29. Pinaud, F., King, D., Moore, H.P. & Weiss, S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126, 6115–6123 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dif, A. et al. Small and stable peptidic PEGylated quantum dots to target polyhistidine-tagged proteins with controlled stoichiometry. J. Am. Chem. Soc. 131, 14738–14746 (2009).

    CAS  PubMed  Google Scholar 

  31. Pinaud, F. et al. Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10, 691–712 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Iyer, G. et al. High affinity scFv-hapten pair as a tool for quantum dot labeling and tracking of single proteins in live cells. Nano Lett. 8, 4618–4623 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bannai, H., Levi, S., Schweizer, C., Dahan, M. & Triller, A. Imaging the lateral diffusion of membrane molecules with quantum dots. Nat. Protocols 1, 2628–2634 (2006).

    CAS  PubMed  Google Scholar 

  34. Crane, J.M. & Verkman, A.S. Long-range nonanomalous diffusion of quantum dot-labeled aquaporin-1 water channels in the cell plasma membrane. Biophys. J. 94, 702–713 (2008).

    CAS  PubMed  Google Scholar 

  35. Ehrensperger, M.V., Hanus, C., Vannier, C., Triller, A. & Dahan, M. Multiple association states between glycine receptors and gephyrin identified by SPT analysis. Biophys. J. 92, 3706–3718 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lidke, D.S., Lidke, K.A., Rieger, B., Jovin, T.M. & Arndt-Jovin, D.J. Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors. J. Cell Biol. 170, 619–626 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gralle, M., Botelho, M.G. & Wouters, F.S. Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers. J. Biol. Chem. 284, 15016–15025 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Andrews, N.L. et al. Actin restricts Fc epsilon RI diffusion and facilitates antigen-induced receptor immobilization. Nat. Cell Biol. 10, 955–963 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Marks, K.M. & Nolan, G.P. Chemical labeling strategies for cell biology. Nat. Methods 3, 591–596 (2006).

    CAS  PubMed  Google Scholar 

  40. Howarth, M., Takao, K., Hayashi, Y. & Ting, A.Y. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA 102, 7583–7588 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Genin, E. et al. CrAsH—quantum dot nanohybrids for smart targeting of proteins. J. Am. Chem. Soc. 130, 8596–8597 (2008).

    CAS  PubMed  Google Scholar 

  42. So, M.-K., Yao, H. & Rao, J. HaloTag protein-mediated specific labeling of living cells with quantum dots. Biochem. Biophys. Res. Commun. 374, 419–423 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, J. et al. Ni-nitrilotriacetic acid-modified quantum dots as a site-specific labeling agent of histidine-tagged proteins in live cells. Chem. Commun. 2008, 1910–1912 (2008).

    Google Scholar 

  44. Swift, J.L. & Cramb, D.T. Nanoparticles as fluorescence labels: is size all that matters? Biophys. J. 95, 865–876 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bonasio, R. et al. Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots. Proc. Natl. Acad. Sci. USA 104, 14753–14758 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. George, N., Pick, H., Vogel, H., Johnsson, N. & Johnsson, K. Specific labeling of cell surface proteins with chemically diverse compounds. J. Am. Chem. Soc. 126, 8896–8897 (2004).

    CAS  PubMed  Google Scholar 

  47. Sunbul, M., Yen, M., Zou, Y. & Yin, J. Enzyme catalyzed site-specific protein labeling and cell imaging with quantum dots. Chem. Commun. 2008, 5927–5929 (2008).

    Google Scholar 

  48. Zanchet, D., Micheel, C.M., Parak, W.J., Gerion, D. & Alivisatos, A.P. Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett. 1, 32–35 (2001).

    CAS  Google Scholar 

  49. Sperling, R.A., Pellegrino, T., Li, J.K., Chang, W.H. & Parak, W.J. Electrophoretic separation of nanoparticles with a discrete number of functional groups. Adv. Funct. Mater. 16, 943–948 (2006).

    CAS  Google Scholar 

  50. Meijering, E., Smal, I. & Danuser, G. Tracking in molecular bioimaging. IEEE Signal Process. Mag. 23, 46–53 (2006).

    Google Scholar 

  51. Thompson, R.E., Larson, D.R. & Webb, W.W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheezum, M.K., Walker, W.F. & Guilford, W.H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81, 2378–2388 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bonneau, S., Dahan, M. & Cohen, L.D. Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume. IEEE Trans. Image Process. 14, 1384–1395 (2005).

    PubMed  Google Scholar 

  54. Serge, A., Bertaux, N., Rigneault, H. & Marguet, D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods 5, 687–694 (2008).

    CAS  PubMed  Google Scholar 

  55. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008). With reference 54, this paper describes freely downloadable software for tracking single nanoparticles in image sequences.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Qian, H., Sheetz, M.P. & Elson, E.L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60, 910–921 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bouzigues, C. & Dahan, M. Transient directed motions of GABA(A) receptors in growth cones detected by a speed correlation index. Biophys. J. 92, 654–660 (2007).

    CAS  PubMed  Google Scholar 

  58. Huet, S. et al. Analysis of transient behavior in complex trajectories: application to secretory vesicle dynamics. Biophys. J. 91, 3542–3559 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Meilhac, N., Le Guyader, L., Salome, L. & Destainville, N. Detection of confinement and jumps in single-molecule membrane trajectories. Phys. Rev. E 73, 011915 (2006).

    CAS  Google Scholar 

  60. Simson, R., Sheets, E.D. & Jacobson, K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J. 69, 989–993 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Helmuth, J.A., Burckhardt, C.J., Koumoutsakos, P., Greber, U.F. & Sbalzarini, I.F. A novel supervised trajectory segmentation algorithm identifies distinct types of human adenovirus motion in host cells. J. Struct. Biol. 159, 347–358 (2007).

    PubMed  Google Scholar 

  62. Masson, J.B. et al. Inferring maps of forces inside cell membrane microdomains. Phys. Rev. Lett. 102, 048103 (2009).

    PubMed  Google Scholar 

  63. Durisic, N. et al. Detection and correction of blinking bias in image correlation transport measurements of quantum dot tagged macromolecules. Biophys. J. 93, 1338–1346 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lidke, D.S. et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 22, 198–203 (2004). Earliest use of ligand-conjugated QDs for the real-time imaging of EGF-erb/HER signal transduction in live cells.

    CAS  PubMed  Google Scholar 

  65. Bouzigues, C., Morel, M., Triller, A. & Dahan, M. Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging. Proc. Natl. Acad. Sci. USA 104, 11251–11256 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. O'Connell, K.M.S., Rolig, A.S., Whitesell, J.D. & Tamkun, M.M. Kv2.1 potassium channels are retained within dynamic cell surface microdomains that are defined by a perimeter fence. J. Neurosci. 26, 9609–9618 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tamkun, M.M., O'Connell, K.M.S. & Rolig, A.S. A cytoskeletal-based perimeter fence selectively corrals a sub-population of cell surface Kv2.1 channels. J. Cell Sci. 120, 2413–2423 (2007).

    CAS  PubMed  Google Scholar 

  68. Bates, I.R. et al. Membrane lateral diffusion and capture of CFTR within transient confinement zones. Biophys. J. 91, 1046–1058 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, H., Titushkin, I., Stroscio, M. & Cho, M. Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells. Biophys. J. 92, 1399–1408 (2007).

    CAS  PubMed  Google Scholar 

  70. Kodippili, G.C. et al. Imaging of the diffusion of single band 3 molecules on normal and mutant erythrocytes. Blood 113, 6237–6245 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Crane, J.M., Van Hoek, A.N., Skach, W.R. & Verkman, A.S. Aquaporin-4 dynamics in orthogonal arrays in live cells visualized by quantum dot single particle tracking. Mol. Biol. Cell 19, 3369–3378 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Crane, J.M. & Verkman, A.S. Determinants of aquaporin-4 assembly in orthogonal arrays revealed by live-cell single-molecule fluorescence imaging. J. Cell Sci. 122, 813–821 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201–205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Groc, L. et al. NMDA receptor surface mobility depends on NR2A–2B subunits. Proc. Natl. Acad. Sci. USA 103, 18769–18774 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Levi, S. et al. Homeostatic regulation of synaptic GlyR numbers driven by lateral diffusion. Neuron 59, 261–273 (2008).

    CAS  PubMed  Google Scholar 

  76. Mikasova, L., Groc, L., Choquet, D. & Manzoni, O.J. Altered surface trafficking of presynaptic cannabinoid type 1 receptor in and out synaptic terminals parallels receptor desensitization. Proc. Natl. Acad. Sci. USA 105, 18596–18601 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Geng, L., Qian, Y.K., Madhavan, R. & Peng, H.B. Transmembrane mechanisms in the assembly of the postsynaptic apparatus at the neuromuscular junction. Chem. Biol. Interact. 175, 108–112 (2008).

    CAS  PubMed  Google Scholar 

  78. Triller, A. & Choquet, D. New concepts in synaptic biology derived from single-molecule imaging. Neuron 59, 359–374 (2008).

    CAS  PubMed  Google Scholar 

  79. Charrier, C., Ehrensperger, M.-V., Dahan, M., Levi, S. & Triller, A. Cytoskeleton regulation of glycine receptor number at synapses and diffusion in the plasma membrane. J. Neurosci. 26, 8502–8511 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Groc, L. et al. NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein reelin. J. Neurosci. 27, 10165–10175 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Renner, M., Choquet, D. & Triller, A. Control of the postsynaptic membrane viscosity. J. Neurosci. 29, 2926–2937 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, Q., Cao, Y.Q. & Tsien, R.W. Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc. Natl. Acad. Sci. USA 104, 17843–17848 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, Q., Li, Y.L. & Tsien, R.W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323, 1448–1453 (2009). With reference 82, an original use of single QD optical properties and size to address the controversial issues of kiss and run versus full collapse vesicular fusion as a mechanism for presynaptic release in neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cui, B. et al. One at a time, live tracking of NGF axonal transport using quantum dots. Proc. Natl. Acad. Sci. USA 104, 13666–13671 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Echarte, M.M., Bruno, L., Arndt-Jovin, D.J., Jovin, T.M. & Pietrasanta, L.I. Quantitative single particle tracking of NGF-receptor complexes: transport is bidirectional but biased by longer retrograde run lengths. FEBS Lett. 581, 2905–2913 (2007).

    CAS  PubMed  Google Scholar 

  86. Rajan, S.S., Liu, H.Y. & Vu, T.Q. Ligand-bound quantum dot probes for studying the molecular scale dynamics of receptor endocytic trafficking in live cells. ACS Nano. 2, 1153–1166 (2008).

    CAS  PubMed  Google Scholar 

  87. Joo, K.I. et al. Site-specific labeling of enveloped viruses with quantum dots for single virus tracking. ACS Nano. 2, 1553–1562 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Courty, S., Luccardini, C., Bellaiche, Y., Cappello, G. & Dahan, M. Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett. 6, 1491–1495 (2006). First report of QD use for intracellular tracking, with a study of individual kinesin motor movements in the cytoplasm of live cells.

    CAS  PubMed  Google Scholar 

  89. Pierobon, P. et al. Velocity, processivity, and individual steps of single myosin V molecules in live cells. Biophys. J. 96, 4268–4275 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nelson, S.R., Ali, M.Y., Trybus, K.M. & Warshaw, D.M. Random walk of processive, quantum dot-labeled myosin Va molecules within the actin cortex of COS-7 cells. Biophys. J. 97, 509–518 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Keren, K., Yam, P.T., Kinkhabwala, A., Mogilner, A. & Theriot, J.A. Intracellular fluid flow in rapidly moving cells. Nat. Cell Biol. 11, 1219–U137 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ishihama, Y. & Funatsu, T. Single molecule tracking of quantum dot-labeled mRNAs in a cell nucleus. Biochem. Biophys. Res. Commun. 381, 33–38 (2009).

    CAS  PubMed  Google Scholar 

  93. Wells, N.P. et al. Going beyond 2D: following membrane diffusion and topography in the IgE-Fc[epsilon]RI system using 3-dimensional tracking microscopy. Proc. SPIE 7185, 71850Z-1–71850Z-13 (2009).

  94. Holtzer, L., Meckel, T. & Schmidt, T. Nanometric three-dimensional tracking of individual quantum dots in cells. Appl. Phys. Lett. 90, 053902-1–053902-3 (2007).

    Google Scholar 

  95. Ram, S., Prabhat, P., Chao, J., Ward, E.S. & Ober, R.J. High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. Biophys. J. 95, 6025–6043 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Thompson, M.A., Lew, M.D., Badieirostami, M. & Moerner, W.E. Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. Nano Lett. 10, 211–218 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Choi, H.S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Smith, A.M. & Nie, S. Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. J. Am. Chem. Soc. 130, 11278–11279 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Xie, R., Battaglia, D. & Peng, X. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 129, 15432–15433 (2007).

    CAS  PubMed  Google Scholar 

  100. Zimmer, J.P. et al. Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J. Am. Chem. Soc. 128, 2526–2527 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hohng, S. & Ha, T. Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc. 126, 1324–1325 (2004).

    CAS  PubMed  Google Scholar 

  102. Chen, Y. et al. Giant multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008).

    CAS  PubMed  Google Scholar 

  103. Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).

    CAS  PubMed  Google Scholar 

  104. Wang, X. et al. Non-blinking semiconductor nanocrystals. Nature 459, 686–689 (2009).

    CAS  PubMed  Google Scholar 

  105. Misteli, T. The concept of self-organization in cellular architecture. J. Cell Biol. 155, 181–185 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ulbrich, M.H. & Isacoff, E.Y. Subunit counting in membrane-bound proteins. Nat. Methods 4, 319–321 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Delehanty, J., Mattoussi, H. & Medintz, I. Delivering quantum dots into cells: strategies, progress and remaining issues. Anal. Bioanal. Chem. 393, 1091–1105 (2009).

    CAS  PubMed  Google Scholar 

  109. Jaiswal, J.K., Mattoussi, H., Mauro, J.M. & Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2003).

    CAS  PubMed  Google Scholar 

  110. Derfus, A.M., Chan, W.C.W. & Bhatia, S.N. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 16, 961–966 (2004).

    CAS  Google Scholar 

  111. Delehanty, J.B. et al. Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconjug. Chem. 17, 920–927 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ruan, G., Agrawal, A., Marcus, A.I. & Nie, S. Imaging and tracking of Tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J. Am. Chem. Soc. 129, 14759–14766 (2007).

    CAS  PubMed  Google Scholar 

  113. Chan, W.C.W. & Nie, S.M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    CAS  PubMed  Google Scholar 

  114. Tekle, C., v Deurs, B., Sandvig, K. & Iversen, T.-G. Cellular trafficking of quantum dot-ligand bioconjugates and their induction of changes in normal routing of unconjugated ligands. Nano Lett. 8, 1858–1865 (2008).

    CAS  PubMed  Google Scholar 

  115. Yoo, J., Kambara, T., Gonda, K. & Higuchi, H. Intracellular imaging of targeted proteins labeled with quantum dots. Exp. Cell Res. 314, 3563–3569 (2008).

    CAS  PubMed  Google Scholar 

  116. Kim, B.Y.S. et al. Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets. Nano Lett. 8, 3887–3892 (2008).

    CAS  PubMed  Google Scholar 

  117. Duan, H. & Nie, S. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J. Am. Chem. Soc. 129, 3333–3338 (2007).

    CAS  PubMed  Google Scholar 

  118. Qi, L. & Gao, X. Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano 2, 1403–1410 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Jablonski, A.E., Humphries, W.H. & Payne, C.K. Pyrenebutyrate-mediated delivery of quantum dots across the plasma membrane of living cells. J. Phys. Chem. B 113, 405–408 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen, X., Kis, A., Zettl, A. & Bertozzi, C.R. A cell nanoinjector based on carbon nanotubes. Proc. Natl. Acad. Sci. USA 104, 8218–8222 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Park, S., Kim, Y.-S., Kim, W.B. & Jon, S. Carbon nanosyringe array as a platform for intracellular delivery. Nano Lett. 9, 1325–1329 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Bellaiche, G. Cappello, P. Desbiolles, V. Marchi-Artzner, M. Renner and A. Triller for careful reading of the manuscript and valuable discussions. F.P. acknowledges financial support from a Marie Curie-Intra-European Fellowship (contract MEIF-CT-2006-040210) and a European Molecular Biology Organization Long-Term Fellowship. S.C. is supported by postdoctoral fellowships from Université Pierre et Marie Curie and the Fondation pour la Recherche Médicale. A.S. is supported by a doctoral fellowship from the Marie Curie Training Network. M.D. acknowledges funding from the Fondation pour la Recherche Médicale, Agence Nationale pour la Recherche (ANR-05-PNANO-045), the Human Frontier Science Program (RGP0005/2007) and the Centre C'Nano Ile de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Dahan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinaud, F., Clarke, S., Sittner, A. et al. Probing cellular events, one quantum dot at a time. Nat Methods 7, 275–285 (2010). https://doi.org/10.1038/nmeth.1444

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1444

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing