Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electric-field control of spin waves at room temperature in multiferroic BiFeO3

Abstract

To face the challenges lying beyond present technologies based on complementary metal–oxide–semiconductors, new paradigms for information processing are required. Magnonics1 proposes to use spin waves to carry and process information, in analogy with photonics that relies on light waves, with several advantageous features such as potential operation in the terahertz range and excellent coupling to spintronics2. Several magnonic analog and digital logic devices3 have been proposed, and some demonstrated4. Just as for spintronics, a key issue for magnonics is the large power required to control/write information (conventionally achieved through magnetic fields applied by strip lines, or by spin transfer from large spin-polarized currents). Here we show that in BiFeO3, a room-temperature magnetoelectric material5, the spin-wave frequency (>600 GHz) can be tuned electrically by over 30%, in a non-volatile way and with virtually no power dissipation. Theoretical calculations indicate that this effect originates from a linear magnetoelectric effect related to spin–orbit coupling induced by the applied electric field. We argue that these properties make BiFeO3 a promising medium for spin-wave generation, conversion and control in future magnonics architectures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical control of spin waves.
Figure 2: Spin-wave hysteresis loop.
Figure 3: Electric-field dependence of the measured and calculated spin-wave frequencies.

Similar content being viewed by others

References

  1. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  Google Scholar 

  2. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–267 (2010).

    Article  CAS  Google Scholar 

  3. Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

    Article  Google Scholar 

  4. Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).

    Article  Google Scholar 

  5. Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

    Article  CAS  Google Scholar 

  6. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  7. Chu, Y-H. et al. Electric-field control of ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008).

    Article  CAS  Google Scholar 

  8. Chappert, C., Fert, A. & Nguyen Van Dau, F. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  CAS  Google Scholar 

  9. Pimenov, A., Mukhin, A. A., Ivanov, V. Y., Balbashov, A. M. & Loidl, A. Possible evidence for electromagnons in multiferroic manganites. Nature Phys. 2, 97–100 (2006).

    Article  CAS  Google Scholar 

  10. Cazayous, M. et al. Possible observation of cycloidal electromagnons in BiFeO3 . Phys. Rev. Lett. 101, 037601 (2008).

    Article  CAS  Google Scholar 

  11. Pimenov, A., Shuvaev, A. M., Mukhin, A. A. & Loidl, A. Electromagnons in multiferroic manganites. J. Phys. Condens. Matter 20, 434209 (2008).

    Article  Google Scholar 

  12. Lebeugle, D. et al. Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 76, 024116 (2007).

    Article  Google Scholar 

  13. Smolenski, G. A., Yudin, V. M., Sher, E. S. N. & Stolypin, Y. E. Antiferromagnetic properties of some perovskites. Sov. Phys. JETP 16, 622–624 (1963).

    Google Scholar 

  14. Lee, S. et al. Single ferroelectric and chiral magnetic domain of single-crystalline BiFeO3 in an electric field. Phys. Rev. B 78, 100101(R) (2008).

    Article  Google Scholar 

  15. Sosnowska, I., Peterlin-Neumaier, T. & Steichele, E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15, 4835–4846 (1982).

    Article  CAS  Google Scholar 

  16. Lebeugle, D. et al. Electric-field-induced spin flop in BiFeO3 single crystal at room temperature. Phys. Rev. Lett. 100, 227602 (2008).

    Article  CAS  Google Scholar 

  17. Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater. 5, 823–829 (2006).

    Article  CAS  Google Scholar 

  18. Baek, S. H. et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nature Mater. 9, 309–314 (2010).

    Article  CAS  Google Scholar 

  19. Singh, M. K., Katiyar, R. & Scott, J. F. New magnetic phase transitions in BiFeO3 . J. Phys. Condens. Mater 20, 252203 (2008).

    Article  Google Scholar 

  20. Rovillain, P. et al. Polar phonons and spin excitations coupling in multiferroic BiFeO3 crystals. Phys. Rev. B 79, 180411(R) (2009).

    Article  Google Scholar 

  21. de Sousa, R. & Moore, J. E. Optical coupling to spin waves in the cycloidal multiferroic BiFeO3 . Phys. Rev. B 77, 012406 (2008).

    Article  Google Scholar 

  22. Rado, G. T., Vittoria, C., Ferrari, J. M. & Remeika, J. P. Linear electric field shift of a ferromagnetic resonance: Lithium ferrite. Phys. Rev. Lett. 41, 1253–1255 (1978).

    Article  CAS  Google Scholar 

  23. Vlaminck, V. & Bailleul, M. Current-induced spin-wave Doppler shift. Science 322, 410–413 (2008).

    Article  CAS  Google Scholar 

  24. de Sousa, R. & Moore, J. E. Comment on ‘Ferroelectrically induced weak ferromagnetism by design’. Phys. Rev. Lett. 102, 249701 (2009).

    Article  Google Scholar 

  25. Sparavigna, A., Strigazzi, A. & Zvezdin, A. Electric-field effect on the spin-density wave in magnetic ferrolectrics. Phys. Rev. B. 50, 2953–2957 (1994).

    Article  CAS  Google Scholar 

  26. de Sousa, R. & Moore, J. E. Electrical control of magnon propagation in multiferroic BiFeO3 films. Appl. Phys. Lett. 92, 022514 (2008).

    Article  Google Scholar 

  27. Mills, D. L. & Dzyloshinskii, I. E. Influence of electric fields on spin waves in simple ferromagnets: Role of the flexoelectric interaction. Phys. Rev. B 78, 184422 (2008).

    Article  Google Scholar 

  28. Zvezdin, A. K. & Pyatakov, A. P. Flexomagnetoelectric effect in bismuth ferrite. Phys. Status Solidi B 246, 1956–1960 (2009).

    Article  CAS  Google Scholar 

  29. Béa, H., Gajek, M., Bibes, M. & Barthélémy, A. Spintronics with multiferroics. J. Phys. Condens. Matter 20, 434221 (2008).

    Article  Google Scholar 

  30. Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3 . Science 324, 63–66 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank R. Lobo and P. Monod for fruitful discussions and E. Jacquet for technical assistance. D.C., M.B. and A.B. would like to acknowledge support from the French Agence Nationale pour la Recherche, contract MELOIC (ANR-08-P196-36). R.d.S. would like to acknowledge support from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

The samples were grown by A.F. and D.C.; P.R., M.C., M.B. and A.B. designed the experiment; P.R. and M.C. carried out experiments and analysed data; R.d.S. developed the model and analysed data. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to M. Cazayous.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 502 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rovillain, P., de Sousa, R., Gallais, Y. et al. Electric-field control of spin waves at room temperature in multiferroic BiFeO3. Nature Mater 9, 975–979 (2010). https://doi.org/10.1038/nmat2899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing