Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antigen-induced tolerance by intrathymic modulation of self-recognizing inhibitory receptors

A Retraction to this article was published on 01 August 2006

Abstract

CD1d-restricted invariant natural killer T cell (iNKT cells) have a limited T cell receptor (TCR) repertoire and share characteristics common to T cells and natural killer cells. While intrathymic selection facilitates the production of T cells carrying self major histocompatibility complex–restricted TCRs, natural killer cells carry an appropriate repertoire of self major histocompatibility complex–recognizing receptors to avoid self-reactivity. Here we show that chronic exposure to specific glycolipid antigen resulted in iNKT cell disappearance and thymus-dependent repopulation of iNKT cells with increased expression of inhibitory Ly-49 molecules that resulted in impaired responsiveness. Thymic selection of peripheral Ly-49-expressing iNKT cell repertoire inhibited cytokine production and other functions in vivo. These observations emphasize the acquisition of self-recognizing inhibitory receptors on NKT cells as a previously unknown mechanism of thymic tolerance after chronic antigen exposure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronic α-GalCer ligand exposure depletes the periphery of iNKT cells.
Figure 2: Chronic α-GalCer ligand exposure alters NKR expression on thymic iNKT cells.
Figure 3: Delayed reconstitution of the periphery with iNKT cells after chronic exposure to specific glycolipid antigen.
Figure 4: The thymus is essential for reconstitution of NK1.1dim Ly-49 expressing iNKT cells in the periphery.
Figure 5: Cytokine production is not required for reconstitution of NK1.1lo Ly-49-expressing iNKT cells in the periphery.
Figure 6: Impaired cytokine production from iNKT cells in chronic antigen–exposed mice by MHC class I recognition.
Figure 7: Loss of iNKT cell self-responsiveness in chronic antigen–exposed mice.
Figure 8: Altered NKR expression on iNKT cell repertoire correlates with disease.

Similar content being viewed by others

References

  1. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865 (1995).

    Article  CAS  Google Scholar 

  2. Bendelac, A., Rivera, M.N., Park, S.H. & Roark, J.H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  Google Scholar 

  3. Godfrey, D.I., Hammond, K.J., Poulton, L.D., Smyth, M.J. & Baxter, A.G. NKT cells: facts, functions and fallacies. Immunol. Today 21, 573–583 (2000).

    Article  CAS  Google Scholar 

  4. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2, 557–568 (2002).

    Article  CAS  Google Scholar 

  5. Yokoyama, W.M. & Plougastel, B.F. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3, 304–316 (2003).

    Article  CAS  Google Scholar 

  6. Smyth, M.J. et al. NKT cells—conductors of tumor immunity? Curr. Opin. Immunol. 14, 165–171 (2002).

    Article  CAS  Google Scholar 

  7. Yang, J.Q. et al. Repeated α-galactosylceramide administration results in expansion of NK T cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J. Immunol. 171, 4439–4446 (2003).

    Article  CAS  Google Scholar 

  8. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  Google Scholar 

  9. Davis, M.M. & Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).

    Article  CAS  Google Scholar 

  10. Garcia, K.C., Teyton, L. & Wilson, I.A. Structural basis of T cell recognition. Annu. Rev. Immunol. 17, 369–397 (1999).

    Article  CAS  Google Scholar 

  11. Sebzda, E. et al. Selection of the T cell repertoire. Annu. Rev. Immunol. 17, 829–874 (1999).

    Article  CAS  Google Scholar 

  12. MacDonald, H.R. Immunology. T before NK. Science 296, 481–482 (2002).

    Article  CAS  Google Scholar 

  13. Gapin, L., Matsuda, J.L., Surh, C.D. & Kronenberg, M. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat. Immunol. 2, 971–978 (2001).

    Article  CAS  Google Scholar 

  14. Chun, T. et al. CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells. J. Exp. Med. 197, 907–918 (2003).

    Article  CAS  Google Scholar 

  15. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NK T cell lineage. Science 296, 553–555 (2002).

    Article  CAS  Google Scholar 

  16. Pellicci, D.G. et al. A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1CD4+ CD1d-dependent precursor stage. J. Exp. Med. 195, 835–844 (2002).

    Article  CAS  Google Scholar 

  17. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  Google Scholar 

  18. Sidobre, S. et al. The Vα14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J. Immunol. 169, 1340–1348 (2002).

    Article  CAS  Google Scholar 

  19. Eberl, G. & MacDonald, H.R. Rapid death and regeneration of NKT cells in anti-CD3ε- or IL-12-treated mice: a major role for bone marrow in NKT cell homeostasis. Immunity 9, 345–353 (1998).

    Article  CAS  Google Scholar 

  20. Eberl, G. & MacDonald, H.R. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur. J. Immunol. 30, 985–992 (2000).

    Article  CAS  Google Scholar 

  21. Crowe, N.Y. et al. Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J. Immunol. 171, 4020–4027 (2003).

    Article  CAS  Google Scholar 

  22. Wilson, M.T. et al. The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc. Natl. Acad. Sci. USA 100, 10913–10918 (2003).

    Article  CAS  Google Scholar 

  23. Singh, N. et al. Cutting edge: activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J. Immunol. 163, 2373–2377 (1999).

    CAS  PubMed  Google Scholar 

  24. Burdin, N., Brossay, L. & Kronenberg, M. Immunization with α-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur. J. Immunol. 29, 2014–2025 (1999).

    Article  CAS  Google Scholar 

  25. Fujii, S., Shimizu, K., Kronenberg, M. & Steinman, R.M. Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nat. Immunol. 3, 867–874 (2002).

    Article  CAS  Google Scholar 

  26. Pellicci, D.G. et al. Intrathymic NKT cell development is blocked by the presence of α-galactosylceramide. Eur. J. Immunol. 33, 1816–1823 (2003).

    Article  CAS  Google Scholar 

  27. Robson MacDonald, H., Lees, R.K. & Held, W. Developmentally regulated extinction of Ly-49 receptor expression permits maturation and selection of NK1.1+ T cells. J. Exp. Med. 187, 2109–2114 (1998).

    Article  CAS  Google Scholar 

  28. Voyle, R.B. et al. Ligand-dependent inhibition of CD1d-restricted NKT cell development in mice transgenic for the activating receptor Ly49D. J. Exp. Med. 197, 919–925 (2003).

    Article  CAS  Google Scholar 

  29. Van Kaer, L., Ashton-Rickardt, P.G., Ploegh, H.L. & Tonegawa, S. TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4-8+ T cells. Cell 71, 1205–1214 (1992).

    Article  CAS  Google Scholar 

  30. Smyth, M.J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668 (2000).

    Article  CAS  Google Scholar 

  31. Crowe, N.Y., Smyth, M.J. & Godfrey, D.I. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J. Exp. Med. 196, 119–127 (2002).

    Article  CAS  Google Scholar 

  32. Takeda, K. & Dennert, G. The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms. J. Exp. Med. 177, 155–164 (1993).

    Article  CAS  Google Scholar 

  33. Mieza, M.A. et al. Selective reduction of Vα14+ NK T cells associated with disease development in autoimmune-prone mice. J. Immunol. 156, 4035–4040 (1996).

    CAS  PubMed  Google Scholar 

  34. Korner, H. et al. Tumor necrosis factor sustains the generalized lymphoproliferative disorder (gld) phenotype. J. Exp. Med. 191, 89–96 (2000).

    Article  CAS  Google Scholar 

  35. Phillips, J.H., Gumperz, J.E., Parham, P. & Lanier, L.L. Superantigen-dependent, cell-mediated cytotoxicity inhibited by MHC class I receptors on T lymphocytes. Science 268, 403–405 (1995).

    Article  CAS  Google Scholar 

  36. Ortaldo, J.R., Winkler-Pickett, R., Mason, A.T. & Mason, L.H. The Ly-49 family: regulation of cytotoxicity and cytokine production in murine CD3+ cells. J. Immunol. 160, 1158–1165 (1998).

    CAS  PubMed  Google Scholar 

  37. Speiser, D.E. et al. In vivo expression of natural killer cell inhibitory receptors by human melanoma-specific cytolytic T lymphocytes. J. Exp. Med. 190, 775–782 (1999).

    Article  CAS  Google Scholar 

  38. Huard, B. & Karlsson, L. KIR expression on self-reactive CD8+ T cells is controlled by T-cell receptor engagement. Nature 403, 325–328 (2000).

    Article  CAS  Google Scholar 

  39. Coles, M.C., McMahon, C.W., Takizawa, H. & Raulet, D.H. Memory CD8 T lymphocytes express inhibitory MHC-specific Ly49 receptors. Eur. J. Immunol. 30, 236–244 (2000).

    Article  CAS  Google Scholar 

  40. Huard, B. & Karlsson, L. A subpopulation of CD8+ T cells specific for melanocyte differentiation antigens expresses killer inhibitory receptors (KIR) in healthy donors: evidence for a role of KIR in the control of peripheral tolerance. Eur. J. Immunol. 30, 1665–1675 (2000).

    Article  CAS  Google Scholar 

  41. Moser, J.M., Gibbs, J., Jensen, P.E. & Lukacher, A.E. CD94-NKG2A receptors regulate antiviral CD8+ T cell responses. Nat. Immunol. 3, 189–195 (2002).

    Article  CAS  Google Scholar 

  42. Giaccone, G. et al. A phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin. Cancer Res. 8, 3702–3709 (2002).

    CAS  PubMed  Google Scholar 

  43. Nieda, M. et al. Therapeutic activation of Vα24+Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103, 383–389 (2004).

    Article  CAS  Google Scholar 

  44. Dhodapkar, M.V. et al. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J. Exp. Med. 197, 1667–1676 (2003).

    Article  CAS  Google Scholar 

  45. Tahir, S.M. et al. Loss of IFN-γ production by invariant NK T cells in advanced cancer. J. Immunol. 167, 4046–4050 (2001).

    Article  CAS  Google Scholar 

  46. Yanagisawa, K. et al. Impaired proliferative response of Vα24 NKT cells from cancer patients against α-galactosylceramide. J. Immunol. 168, 6494–6499 (2002).

    Article  CAS  Google Scholar 

  47. Sumida, T. et al. Selective reduction of T cells bearing invariant Vα24JαQ antigen receptor in patients with systemic sclerosis. J. Exp. Med. 182, 1163–1168 (1995).

    Article  CAS  Google Scholar 

  48. Wilson, S.B. et al. Extreme Th1 bias of invariant Vα24JαQ T cells in type 1 diabetes. Nature 391, 177–181 (1998).

    Article  CAS  Google Scholar 

  49. Kojo, S., Adachi, Y., Keino, H., Taniguchi, M. & Sumida, T. Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum. 44, 1127–1138 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kronenberg and K. Takeda for discussions; R. Cameron and the staff of the Peter MacCallum Cancer Centre for their maintenance and care of the mice in this project; and A. Uldrich and D. Pellicci for their technical assistance. Supported by Cancer Research Institute (Y.H.), Cancer Council of Victoria (N.Y.C.) and National Health and Medical Research Council of Australia (M.J.S. and D.I.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Hayakawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayakawa, Y., Berzins, S., Crowe, N. et al. Antigen-induced tolerance by intrathymic modulation of self-recognizing inhibitory receptors. Nat Immunol 5, 590–596 (2004). https://doi.org/10.1038/ni1069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing