Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ontogeny and homeostasis of CNS myeloid cells

An Erratum to this article was published on 19 July 2017

This article has been updated

Abstract

Myeloid cells in the central nervous system (CNS) represent a heterogeneous class of innate immune cells that contribute to the maintenance of tissue homeostasis differentially during development and adulthood. The subsets of CNS myeloid cells identified so far, including parenchymal microglia and non-parenchymal meningeal, perivascular and choroid-plexus macrophages, as well as disease-associated monocytes, have classically been distinguished on the basis of their surface epitope expression, localization and morphology. However, studies using cell-specific targeting, in vivo imaging, single-cell expression analysis and other sophisticated tools have now increased the depth of knowledge of this immune-cell compartment and call for reevaluation of the traditional views on the origin, fate and function of distinct CNS myeloid subsets. The concepts of CNS macrophage biology that are emerging from these new insights have broad implications for the understanding and treatment of CNS diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Origin and turnover of tissue macrophages in healthy CNS.
Figure 2: The localization and genetic signature of CNS macrophages.
Figure 3: Myeloid-cell dysfunction in the adult CNS.

Similar content being viewed by others

Change history

  • 26 April 2017

    In the version of this article initially published, some of the arrows along the right side of Figure 1 were incorrect. The arrow from 'Ly6Chi monocyte' to 'pvMΦ long-living' should be deleted, and an arrow should be added from 'Ly6Chi monocyte' into the boxed area above (top right). The error has been corrected in the HTML and PDF versions of the article.

References

  1. Prinz, M. & Priller, J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15, 300–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Prinz, M., Priller, J., Sisodia, S.S. & Ransohoff, R.M. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat. Neurosci. 14, 1227–1235 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Gomez Perdiguero, E., Schulz, C. & Geissmann, F. Development and homeostasis of 'resident' myeloid cells: the case of the microglia. Glia 61, 112–120 (2013).

    Article  PubMed  Google Scholar 

  5. Molawi, K. et al. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 211, 2151–2158 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ensan, S. et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nat. Immunol. 17, 159–168 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. del Rio-Hortega, P. El 'tercer elemento' de los centros nerviosus. I. La microglia en estado normal. II. Intervencion de la microglia en los procesos patologicos (Celulas en bastoncito y cuerpos granuloadi-posos). III. Naturaleza probable de la microglia. Bol. R. Soc. Esp. Hist. Nat. Secc. Biol. 9, 68–120 (1919).

    Google Scholar 

  9. del Rio-Hortega, P. Microglia in Cytology and Cellular Pathology of the Nervous System (ed. Peneld, W.) 483–534 (P.B. Hoeber, New York, 1932).

  10. Tremblay, M.E., Lecours, C., Samson, L., Sanchez-Zafra, V. & Sierra, A. From the Cajal alumni Achucarro and Rio-Hortega to the rediscovery of never-resting microglia. Front. Neuroanat. 9, 45 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kolmer, W. Über eine eigenartige Beziehung von Wanderzellen zu den Chorioidealplexus des Gehirns der Wirbeltiere. Anat. Anz. 54, 15–19 (1921).

    Google Scholar 

  12. Perry, V.H., Hume, D.A. & Gordon, S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15, 313–326 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Hickey, W.F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Graeber, M.B., Streit, W.J. & Kreutzberg, G.W. Identity of ED2-positive perivascular cells in rat brain. J. Neurosci. Res. 22, 103–106 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Ransohoff, R.M. & Cardona, A.E. The myeloid cells of the central nervous system parenchyma. Nature 468, 253–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Galea, I. et al. Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia 49, 375–384 (2005).

    Article  PubMed  Google Scholar 

  17. Kim, J.V., Kang, S.S., Dustin, M.L. & McGavern, D.B. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457, 191–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science 353, 777–783 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Ransohoff, R.M. & Perry, V.H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Xu, J. et al. Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish. Dev. Cell 34, 632–641 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Sheng, J., Ruedl, C. & Karjalainen, K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43, 382–393 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Mass, E. et al. Specification of tissue-resident macrophages during organogenesis. Science http://dx.doi.org/10.1126/science.aaf4238 (4 August 2016).

  29. Hagemeyer, N. et al. Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation. EMBO J. 35, 1730–1744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hickey, W.F., Vass, K. & Lassmann, H. Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J. Neuropathol. Exp. Neurol. 51, 246–256 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Kennedy, D.W. & Abkowitz, J.L. Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model. Blood 90, 986–993 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Priller, J. et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat. Med. 7, 1356–1361 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Flügel, A., Bradl, M., Kreutzberg, G.W. & Graeber, M.B. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J. Neurosci. Res. 66, 74–82 (2001).

    Article  PubMed  Google Scholar 

  34. Djukic, M. et al. Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain 129, 2394–2403 (2006).

    Article  PubMed  Google Scholar 

  35. Vallieres, L. & Sawchenko, P.E. Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J. Neurosci. 23, 5197–5207 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10, 1544–1553 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Mildner, A. et al. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease. J. Neurosci. 31, 11159–11171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ajami, B., Bennett, J.L., Krieger, C., Tetzlaff, W. & Rossi, F.M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Kierdorf, K., Katzmarski, N., Haas, C.A. & Prinz, M. Bone marrow cell recruitment to the brain in the absence of irradiation or parabiosis bias. PLoS One 8, e58544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16, 1618–1626 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Bertrand, J.Y. et al. Three pathways to mature macrophages in the early mouse yolk sac. Blood 106, 3004–3011 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Hoeffel, G. et al. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Masuda, T. et al. IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Rep. 1, 334–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Minten, C., Terry, R., Deffrasnes, C., King, N.J. & Campbell, I.L. IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS. PLoS One 7, e49851 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kida, S., Steart, P.V., Zhang, E.T. & Weller, R.O. Perivascular cells act as scavengers in the cerebral perivascular spaces and remain distinct from pericytes, microglia and macrophages. Acta Neuropathol. 85, 646–652 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Kosel, S. et al. Long-lasting perivascular accumulation of major histocompatibility complex class II-positive lipophages in the spinal cord of stroke patients: possible relevance for the immune privilege of the brain. Acta Neuropathol. 94, 532–538 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takahashi, K. et al. Differentiation of donor-derived cells into microglia after umbilical cord blood stem cell transplantation. J. Neuropathol. Exp. Neurol. 74, 862–866 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Daneman, R., Zhou, L., Kebede, A.A. & Barres, B.A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brendecke, S.M. & Prinz, M. Do not judge a cell by its cover–diversity of CNS resident, adjoining and infiltrating myeloid cells in inflammation. Semin. Immunopathol. 37, 591–605 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Williams, K., Alvarez, X. & Lackner, A.A. Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 36, 156–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Checchin, D., Sennlaub, F., Levavasseur, E., Leduc, M. & Chemtob, S. Potential role of microglia in retinal blood vessel formation. Invest. Ophthalmol. Vis. Sci. 47, 3595–3602 (2006).

    Article  PubMed  Google Scholar 

  53. Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, C. et al. Macrophages mediate the repair of brain vascular rupture through direct physical adhesion and mechanical traction. Immunity 44, 1162–1176 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Mato, M. et al. Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex. Proc. Natl. Acad. Sci. USA 93, 3269–3274 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Prinz, M. & Priller, J. The role of peripheral immune cells in the CNS in steady state and disease. Nat. Neurosci. 20, 136–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Engelhardt, B. & Ransohoff, R.M. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol. 33, 579–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Engelhardt, B., Vajkoczy, P. & Weller, R.O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Streit, W.J., Graeber, M.B. & Kreutzberg, G.W. Expression of Ia antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury. Exp. Neurol. 105, 115–126 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Elmquist, J.K. et al. Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. J. Comp. Neurol. 381, 119–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Polfliet, M.M. et al. Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J. Immunol. 167, 4644–4650 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. He, J. et al. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385, 645–649 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Hawkes, C.A. & McLaurin, J. Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc. Natl. Acad. Sci. USA 106, 1261–1266 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Faraco, G. et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest. 126, 4674–4689 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Engelhardt, B., Wolburg-Buchholz, K. & Wolburg, H. Involvement of the choroid plexus in central nervous system inflammation. Microsc. Res. Tech. 52, 112–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Schwartz, M. & Baruch, K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J. 33, 7–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Kunis, G., Baruch, K., Miller, O. & Schwartz, M. Immunization with a myelin-derived antigen activates the brain's choroid plexus for recruitment of immunoregulatory cells to the CNS and attenuates disease progression in a mouse model of ALS. J. Neurosci. 35, 6381–6393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baruch, K., Kertser, A., Porat, Z. & Schwartz, M. Cerebral nitric oxide represses choroid plexus NFkappaB-dependent gateway activity for leukocyte trafficking. EMBO J. 34, 1816–1828 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gautier, E.L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Becher, B. et al. High-dimensional analysis of the murine myeloid cell system. Nat. Immunol. 15, 1181–1189 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Hickman, S.E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Buttgereit, A. et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17, 1397–1406 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Chiu, I.M. et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep. 4, 385–401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mildner, A., Huang, H., Radke, J., Stenzel, W. & Priller, J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia 65, 375–387 (2017).

    Article  PubMed  Google Scholar 

  79. Lassmann, H., Zimprich, F., Vass, K. & Hickey, W.F. Microglial cells are a component of the perivascular glia limitans. J. Neurosci. Res. 28, 236–243 (1991).

    Article  CAS  PubMed  Google Scholar 

  80. Linehan, S.A., Martinez-Pomares, L., Stahl, P.D. & Gordon, S. Mannose receptor and its putative ligands in normal murine lymphoid and nonlymphoid organs: In situ expression of mannose receptor by selected macrophages, endothelial cells, perivascular microglia, and mesangial cells, but not dendritic cells. J. Exp. Med. 189, 1961–1972 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Polfliet, M.M., Fabriek, B.O., Daniels, W.P., Dijkstra, C.D. & van den Berg, T.K. The rat macrophage scavenger receptor CD163: expression, regulation and role in inflammatory mediator production. Immunobiology 211, 419–425 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Erny, D., Hrabe de Angelis, A.L. & Prinz, M. Communicating systems in the body: how microbiota and microglia cooperate. Immunology 150, 7–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Sharma, K. et al. Cell type- and brain region-resolved mouse brain proteome. Nat. Neurosci. 18, 1819–1831 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bruttger, J. et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43, 92–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Bennett, M.L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl. Acad. Sci. USA 113, E1738–E1746 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Satoh, J. et al. TMEM119 marks a subset of microglia in the human brain. Neuropathology 36, 39–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Biber, K., Moller, T., Boddeke, E. & Prinz, M. Central nervous system myeloid cells as drug targets: current status and translational challenges. Nat. Rev. Drug Discov. 15, 110–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Bianchin, M.M., Martin, K.C., de Souza, A.C., de Oliveira, M.A. & Rieder, C.R. Nasu-Hakola disease and primary microglial dysfunction. Nat Rev Neurol 6, 2 p following 523 (2010).

  90. Rademakers, R. et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 44, 200–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Battisti, C. et al. Hereditary diffuse leukoencephalopathy with axonal spheroids: three patients with stroke-like presentation carrying new mutations in the CSF1R gene. J. Neurol. 261, 768–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Nandi, S. et al. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev. Biol. 367, 100–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luo, J. et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J. Exp. Med. 210, 157–172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Paloneva, J. et al. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat. Genet. 25, 357–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Paloneva, J. et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am. J. Hum. Genet. 71, 656–662 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Neumann, H. & Takahashi, K. Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J. Neuroimmunol. 184, 92–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Colonna, M. TREMs in the immune system and beyond. Nat. Rev. Immunol. 3, 445–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Greer, P.L. & Greenberg, M.E. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59, 846–860 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Greer, J.M. & Capecchi, M.R. Hoxb8 is required for normal grooming behavior in mice. Neuron 33, 23–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Chen, S.K. et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141, 775–785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Crow, Y.J. & Manel, N. Aicardi-Goutieres syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Goldmann, T. et al. USP18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J. 34, 1612–1629 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Meuwissen, M.E. et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J. Exp. Med. 213, 1163–1174 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Anandasabapathy, N. et al. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J. Exp. Med. 208, 1695–1705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Parera and C. Groß for critical proofreading. Supported by the competence network of multiple sclerosis funded by Bundesministerium für Bildung und Forschung (M.P.), Sobek-Stiftung (M.P.), Deutsche Forschungsgemeinschaft (SFB 992, SFB1140, SFB/TRR167 and a Reinhart-Koselleck-Grant to M.P.; and SFB/TRR167 to D.E.) and the Faculty of Medicine of the University of Freiburg (Berta-Ottenstein-Programme; D.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Prinz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prinz, M., Erny, D. & Hagemeyer, N. Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol 18, 385–392 (2017). https://doi.org/10.1038/ni.3703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3703

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing