Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recognition of CD1d-sulfatide mediated by a type II natural killer T cell antigen receptor

Abstract

Natural killer T cells (NKT cells) are divided into type I and type II subsets on the basis of differences in their T cell antigen receptor (TCR) repertoire and CD1d-antigen specificity. Although the mode by which type I NKT cell TCRs recognize CD1d-antigen has been established, how type II NKT cell TCRs engage CD1d-antigen is unknown. Here we provide a basis for how a type II NKT cell TCR, XV19, recognized CD1d-sulfatide. The XV19 TCR bound orthogonally above the A′ pocket of CD1d, in contrast to the parallel docking of type I NKT cell TCRs over the F′ pocket of CD1d. At the XV19 TCR–CD1d-sulfatide interface, the TCRα and TCRβ chains sat centrally on CD1d, where the malleable CDR3 loops dominated interactions with CD1d-sulfatide. Accordingly, we highlight the diverse mechanisms by which NKT cell TCRs can bind CD1d and account for the distinct antigen specificity of type II NKT cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the binding of the XV19 TCR to CD1d-sulfatide.
Figure 2: Overview of the docking of the type II NKT cell TCR.
Figure 3: Contacts between the XV19 TCR and CD1d.
Figure 4: Sulfatide-mediated contacts between the XV19 TCR and CD1d.
Figure 5: Energetic determinants of type II NKT cell TCR–CD1d-antigen interactions.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J. & Van Kaer, L. NKT cells: what's in a name? Nat. Rev. Immunol. 4, 231–237 (2004).

    CAS  Google Scholar 

  2. Terabe, M. & Berzofsky, J.A. NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol. 28, 491–496 (2007).

    Article  CAS  Google Scholar 

  3. Joyce, S., Girardi, E. & Zajonc, D.M. NKT cell ligand recognition logic: molecular basis for a synaptic duet and transmission of inflammatory effectors. J. Immunol. 187, 1081–1089 (2011).

    Article  CAS  Google Scholar 

  4. Godfrey, D.I. et al. Antigen recognition by CD1d-restricted NKT T cell receptors. Semin. Immunol. 22, 61–67 (2010).

    Article  CAS  Google Scholar 

  5. Borg, N.A. et al. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448, 44–49 (2007).

    Article  CAS  Google Scholar 

  6. Li, Y. et al. The Va14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. J. Exp. Med. 207, 2383–2393 (2010).

    Article  CAS  Google Scholar 

  7. López-Sagaseta, J., Sibener, L.V., Kung, J.E., Gumperz, J. & Adams, E.J. Lysophospholipid presentation by CD1d and recognition by a human natural killer T-cell receptor. EMBO J. 31, 2047–2059 (2012).

    Article  Google Scholar 

  8. Pellicci, D.G. et al. Recognition of β-linked self glycolipids mediated by natural killer T cell antigen receptors. Nat. Immunol. 12, 827–833 (2011).

    Article  CAS  Google Scholar 

  9. Yu, E.D., Girardi, E., Wang, J. & Zajonc, D.M. Cutting edge: structural basis for the recognition of β-linked glycolipid antigens by invariant NKT cells. J. Immunol. 187, 2079–2083 (2011).

    Article  CAS  Google Scholar 

  10. Scott-Browne, J.P. et al. Germline-encoded recognition of diverse glycolipids by natural killer T cells. Nat. Immunol. 8, 1105–1113 (2007).

    Article  CAS  Google Scholar 

  11. Mallevaey, T. et al. A molecular basis for NKT cell recognition of CD1d-self-antigen. Immunity 34, 315–326 (2011).

    Article  CAS  Google Scholar 

  12. Mallevaey, T. et al. T cell receptor CDR2β and CDR3β loops collaborate functionally to shape the iNKT cell repertoire. Immunity 31, 60–71 (2009).

    Article  CAS  Google Scholar 

  13. Matulis, G. et al. Innate-like control of human iNKT cell autoreactivity via the hypervariable CDR3β loop. PLoS Biol. 8, e1000402 (2010).

    Article  Google Scholar 

  14. Patel, O. et al. Vb2 natural killer T cell antigen receptor-mediated recognition of CD1d-glycolipid antigen. Proc. Natl. Acad. Sci. USA 108, 19007–19012 (2011).

    Article  CAS  Google Scholar 

  15. Pellicci, D.G. et al. Differential recognition of CD1d-α-galactosyl ceramide by the Vβ8.2 and Vβ7 semi-invariant NKT T cell receptors. Immunity 31, 47–59 (2009).

    Article  CAS  Google Scholar 

  16. Adams, E.J. & Lopez-Sagaseta, J. The immutable recognition of CD1d. Immunity 34, 281–283 (2011).

    Article  CAS  Google Scholar 

  17. Blomqvist, M. et al. Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells. Eur. J. Immunol. 39, 1726–1735 (2009).

    Article  CAS  Google Scholar 

  18. Jahng, A. et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med. 199, 947–957 (2004).

    Article  CAS  Google Scholar 

  19. Park, S.H. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med. 193, 893–904 (2001).

    Article  CAS  Google Scholar 

  20. Arrenberg, P., Halder, R., Dai, Y., Maricic, I. & Kumar, V. Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a β-linked self-glycolipid. Proc. Natl. Acad. Sci. USA 107, 10984–10989 (2010).

    Article  CAS  Google Scholar 

  21. Cardell, S. et al. CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J. Exp. Med. 182, 993–1004 (1995).

    Article  CAS  Google Scholar 

  22. Bai, L. et al. Lysosomal recycling terminates CD1d-mediated presentation of short and polyunsaturated variants of the NKT cell lipid antigen αGalCer. Proc. Natl. Acad. Sci. USA 106, 10254–10259 (2009).

    Article  CAS  Google Scholar 

  23. Im, J.S. et al. Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity 30, 888–898 (2009).

    Article  CAS  Google Scholar 

  24. Sullivan, B.A. et al. Mechanisms for glycolipid antigen-driven cytokine polarization by Vα14i NKT cells. J. Immunol. 184, 141–153 (2010).

    Article  CAS  Google Scholar 

  25. Wun, K.S. et al. A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells. Immunity 34, 327–339 (2011).

    Article  CAS  Google Scholar 

  26. Godfrey, D.I., Rossjohn, J. & McCluskey, J. The fidelity, occasional promiscuity, and versatility of T cell receptor recognition. Immunity 28, 304–314 (2008).

    Article  CAS  Google Scholar 

  27. Zajonc, D.M. et al. Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J. Exp. Med. 202, 1517–1526 (2005).

    Article  CAS  Google Scholar 

  28. Monzon-Casanova, E. et al. CD1d expression in Paneth cells and rat exocrine pancreas revealed by novel monoclonal antibodies which differentially affect NKT cell activation. PLoS ONE 5, e13089 (2010).

    Article  Google Scholar 

  29. Burdin, N. et al. Structural requirements for antigen presentation by mouse CD1. Proc. Natl. Acad. Sci. USA 97, 10156–10161 (2000).

    Article  CAS  Google Scholar 

  30. Brennan, P.J. et al. Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat. Immunol. 12, 1202–1211 (2011).

    Article  CAS  Google Scholar 

  31. Exley, M.A. et al. Cutting edge: A major fraction of human bone marrow lymphocytes are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses. J. Immunol. 167, 5531–5534 (2001).

    Article  CAS  Google Scholar 

  32. Patel, O. et al. NKT TCR recognition of CD1d-α-C-galactosylceramide. J. Immunol. 187, 4705–4713 (2011).

    Article  CAS  Google Scholar 

  33. Uldrich, A.P. et al. A semi-invariant Vα10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen-recognition properties. Nat. Immunol. 12, 616–623 (2011).

    Article  CAS  Google Scholar 

  34. Aspeslagh, S. et al. Galactose-modified iNKT cell agonists stabilized by an induced fit of CD1d prevent tumour metastasis. EMBO J. 30, 2294–2305 (2011).

    Article  CAS  Google Scholar 

  35. Girardi, E. et al. Unique interplay between sugar and lipid in determining the antigenic potency of bacterial antigens for NKT cells. PLoS Biol. 9, e1001189 (2011).

    Article  CAS  Google Scholar 

  36. Wang, J. et al. Lipid binding orientation within CD1d affects recognition of Borrelia burgorferi antigens by NKT cells. Proc. Natl. Acad. Sci. USA 107, 1535–1540 (2010).

    Article  CAS  Google Scholar 

  37. Wun, K.S. et al. A minimal binding footprint on CD1d-glycolipid is a basis for selection of the unique human NKT TCR. J. Exp. Med. 205, 939–949 (2008).

    Article  CAS  Google Scholar 

  38. Borg, N.A. et al. The CDR3 regions of an immunodominant T cell receptor dictate the 'energetic landscape' of peptide-MHC recognition. Nat. Immunol. 6, 171–180 (2005).

    Article  CAS  Google Scholar 

  39. Garcia, K.C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).

    Article  CAS  Google Scholar 

  40. Hahn, M., Nicholson, M.J., Pyrdol, J. & Wucherpfennig, K.W. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat. Immunol. 6, 490–496 (2005).

    Article  CAS  Google Scholar 

  41. Gras, S. et al. The shaping of T cell receptor recognition by self-tolerance. Immunity 30, 193–203 (2009).

    Article  CAS  Google Scholar 

  42. Gras, S. et al. A structural basis for varied αβ TCR usage against an immunodominant EBV antigen restricted to a HLA-B8 molecule. J. Immunol. 188, 311–321 (2012).

    Article  CAS  Google Scholar 

  43. Chang, D.H. et al. Inflammation associated lysophospholipids as ligands for CD1d restricted T cells in human cancer. Blood 112, 1308–1316 (2008).

    Article  CAS  Google Scholar 

  44. Dieudé, M. et al. Cardiolipin binds to CD1d and stimulates CD1d-restricted γδ T cells in the normal murine repertoire. J. Immunol. 186, 4771–4781 (2011).

    Article  Google Scholar 

  45. Van Rhijn, I. et al. CD1d-restricted T cell activation by nonlipidic small molecules. Proc. Natl. Acad. Sci. USA 101, 13578–13583 (2004).

    Article  CAS  Google Scholar 

  46. Tikhonova, A.N. et al. αβ T cell receptors that do not undergo major histocompatibility complex-specific thymic selection possess antibody-like recognition specificities. Immunity 36, 79–91 (2012).

    Article  CAS  Google Scholar 

  47. Cochet, M. et al. Molecular detection and in vivo analysis of the specific T cell response to a protein antigen. Eur. J. Immunol. 22, 2639–2647 (1992).

    Article  CAS  Google Scholar 

  48. Pannetier, C. et al. The sizes of the CDR3 hypervariable regions of the murine T-cell receptor β chains vary as a function of the recombined germ-line segments. Proc. Natl. Acad. Sci. USA 90, 4319–4323 (1993).

    Article  CAS  Google Scholar 

  49. Casanova, J.L., Romero, P., Widmann, C., Kourilsky, P. & Maryanski, J.L. T cell receptor genes in a series of class I major histocompatibility complex-restricted cytotoxic T lymphocyte clones specific for a Plasmodium berghei nonapeptide: implications for T cell allelic exclusion and antigen-specific repertoire. J. Exp. Med. 174, 1371–1383 (1991).

    Article  CAS  Google Scholar 

  50. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  51. Collaborative Computational Project. CCP4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  52. Bricogne, G. et al. autoBUSTER, Version 1.6.0 (Global Phasing, Cambridge, United Kingdom, 2011).

  53. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, 2002).

Download references

Acknowledgements

We thank the staff at the MX2 beamline of the Australian synchrotron for assistance with data collection and Monash Macromolecular Crystallisation Facility for crystallization experiments. Supported by the National Health and Medical Research Council of Australia (D.I.G. and J.R.), the Australian Research Council, the Cancer Council of Victoria, the US National Institutes of Health (AI090450 and AI092108 to L.G.), the Swedish Research Council (S.L.C.), the Swedish Cancer Society (S.L.C.) and Monash University (S.G. and J.R.).

Author information

Authors and Affiliations

Authors

Contributions

O.P., D.G.P. and S.G. generated and analyzed data; M.L.S.-R., A.J.C., A.T., A.P.U., J.L.N., T.M. and L.G. generated data; S.L.C. provided the XV19 and VIII24 cells; and D.I.G. and J.R. together led the investigation, devised the project, analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Dale I Godfrey or Jamie Rossjohn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 3022 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, O., Pellicci, D., Gras, S. et al. Recognition of CD1d-sulfatide mediated by a type II natural killer T cell antigen receptor. Nat Immunol 13, 857–863 (2012). https://doi.org/10.1038/ni.2372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2372

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing