Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge

Abstract

The growth of oceanic plates at mid-ocean ridges, crustal accretion, occurs by a combination of magmatic and tectonic processes. Magmatic processes along ridges spreading at fast, intermediate and slow rates, continually add volcanic material to a centrally located spreading axis. This creates a narrow band of young volcanic rocks. However, at ridges spreading at ultraslow rates, diminished volcanism allows entire blocks of mantle to spread on the sea floor by tectonic processes. Remote imaging has advanced our observational understanding of crustal accretion, but temporal constraints are required to quantitatively understand ultraslow-spreading ridge construction. Here, we use U-series eruption ages of volcanic rocks collected from the ultraslow-spreading Southwest Indian Ridge. Unexpectedly, we find young volcanic eruption ages that are broadly dispersed throughout the rift valley, indicating that crustal accretion of young volcanic rocks is not confined to a narrow central spreading axis. As areas of young volcanism are observed close to distinct fault surfaces, we propose that the widely dispersed volcanism may result from magma rising along faults. Our results indicate that axial-centric spreading models may not accurately describe crustal accretion at ultraslow-spreading ridges, prompting the re-evaluation of these models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crustal accretion across the spreading rate spectrum.
Figure 2: Rift-valley morphology of the oblique supersegment.
Figure 3: Measured U-series disequilibria in SWIR MORB versus distance from the spreading axis.

Similar content being viewed by others

References

  1. Sinton, J. M. & Detrick, R. S. Mid-ocean ridge magma chambers. J. Geophys. Res. 97, 197–216 (1992).

    Article  Google Scholar 

  2. Macdonald, K. C. Near-bottom magnetic anomalies, asymmetric spreading, oblique spreading, and tectonics of the Mid-Atlantic ridge near lat 37 N. Geol. Soc. Am. Bull. 88, 541–555 (1977).

    Article  Google Scholar 

  3. Maclennan, J., Hulme, T. & Singh, S. Thermal models of oceanic crustal accretion: Linking geophysical, geological and petrological observations. Geochem. Geophys. Geosyst. 5, Q02F25 (2004).

    Article  Google Scholar 

  4. Macdonald, K. C. Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Annu. Rev. Earth Planet. Sci. 10, 155–190 (1982).

    Article  Google Scholar 

  5. Smith, D. K., Tivey, M. A., Schouten, H. & Cann, J. R. Locating the spreading axis along 80 km of the Mid-Atlantic ridge south of the Atlantis transform. J. Geophys. Res. 104, 7599–7612 (1999).

    Article  Google Scholar 

  6. Solomon, S. in Drilling the Oceanic Lower Crust and Mantle: JOI/USSAC Workshop Report (ed. Dick, H. J. B.) 73–74 (Woods Hole Oceanographic Institution, 1989).

    Google Scholar 

  7. Bown, J. W. & White, R. S. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett. 121, 435–439 (1994).

    Article  Google Scholar 

  8. Jackson, H. R., Reid, I. & Falconer, R. K. H. Crustal structure near the Arctic mid-ocean ridge. J. Geophys. Res. 87, 1773–1783 (1982).

    Article  Google Scholar 

  9. Reid, I. & Jackson, H. R. Oceanic spreading rate and crustal thickness. Mar. Geophys. Res. 5, 165–172 (1981).

    Google Scholar 

  10. Dick, H., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003).

    Article  Google Scholar 

  11. Sauter, D. et al. Focused magmatism versus amagmatic spreading along the ultra-slow spreading Southwest Indian Ridge: Evidence from TOBI side scan sonar imagery. Geochem. Geophys. Geosyst. 5, Q10K09 (2004).

    Google Scholar 

  12. Standish, J. J., Dick, H. J. B., Michael, P. J., Melson, W. G. & O’Hearn, T. MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25 E): Major element chemistry and the importance of process versus source. Geochem. Geophys. Geosyst. 9, Q05004 (2008).

    Article  Google Scholar 

  13. Michael, P. J. et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel Ridge, Arctic Ocean. Nature 423, 956–961 (2003).

    Article  Google Scholar 

  14. Cannat, M. et al. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 34, 605–608 (2006).

    Article  Google Scholar 

  15. Behn, M. D., Buck, W. R. & Sacks, I. S. Topographic controls on dike injection in volcanic rift zones. Earth Planet. Sci. Lett. 246, 188–196 (2006).

    Article  Google Scholar 

  16. Buck, W. R., Lavier, L. L. & Poliakov, A. N. B. Modes of faulting at mid-ocean ridges. Nature 434, 719–723 (2005).

    Article  Google Scholar 

  17. Sturm, M. E., Goldstein, S. J., Klein, E. M., Karson, J. A. & Murrell, M. T. Uranium-series age constraints on lavas from the axial valley of the Mid-Atlantic Ridge, MARK area. Earth Planet. Sci. Lett. 181, 61–70 (2000).

    Article  Google Scholar 

  18. Sims, K. W. W. et al. Aberrant youth: Chemical and isotopic constraints on the young off-axis lavas of the East Pacific Rise. Geochem. Geophys. Geosyst. 4, 8621 (2003).

    Article  Google Scholar 

  19. Goldstein, S. J., Perfit, M. R., Batiza, R., Fornari, D. J. & Murrell, M. T. Off-axis volcanism at the East Pacific Rise detected by uranium-series dating of basalts. Nature 367, 157–159 (1994).

    Article  Google Scholar 

  20. Patriat, P., Sloan, H. & Sauter, D. From slow to ultraslow: A previously undetected event at the Southwest Indian Ridge at ca. 24 Myr. Geology 36, 207–210 (2008).

    Article  Google Scholar 

  21. Grindlay, N. R., Madsen, J. A., Rommevaux-Jestin, C. & Sclater, J. A different pattern of ridge segmentation and mantle Bouguer gravity anomalies along the ultra-slow spreading Southwest Indian Ridge (15 30′ E–25 E). Earth Planet. Sci. Lett. 161, 243–253 (1998).

    Article  Google Scholar 

  22. Sauter, D. et al. TOBI sidescan sonar imagery of the very slow-spreading Southwest Indian Ridge: Evidence for along-axis magma distribution. Earth Planet. Sci. Lett. 199, 81–95 (2002).

    Article  Google Scholar 

  23. Mendel, V., Sauter, D., Parson, L. M. & Vanney, J. R. Segmentation and morphotectonic variations along a super slow-spreading centre: The Southwest Indian Ridge (57–70 E). Mar. Geophys. Res. 19, 503–531 (1997).

    Article  Google Scholar 

  24. Rubin, K. H., Macdougall, J. D. & Perfit, M. R. 210Po–210Pb dating of recent volcanic eruptions on the sea floor. Nature 368, 841–844 (1994).

    Article  Google Scholar 

  25. Rubin, K. H., van der Zander, I., Smith, M. C. & Bergmanis, E. C. Minimum speed limit for ocean ridge magmatism from 210Pb-226Ra-230Th disequilibria. Nature 437, 534–538 (2005).

    Article  Google Scholar 

  26. Rubin, K. H. & MacDougall, J. D. Dating of neovolcanic MORB using (226Ra/230Th) disequilibrium. Earth Planet. Sci. Lett. 101, 313–321 (1990).

    Article  Google Scholar 

  27. Zou, H., Zindler, A. & Niu, Y. Constraints on melt movement beneath the East Pacific Rise from 230Th–238U disequilibrium. Science 295, 107–110 (2002).

    Article  Google Scholar 

  28. Goldstein, S. J., Murrell, M. T., Janecky, D. R., Delaney, J. R. & Clague, D. A. Geochronology and petrogenesis of MORB from the Juan de Fuca and Gorda ridges by 238U–230Th disequilibrium. Earth Planet. Sci. Lett. 109, 255–272 (1992).

    Article  Google Scholar 

  29. Cooper, K. M., Goldstein, S. J., Sims, K. W. W. & Murrell, M. T. Uranium-series chronology of Gorda Ridge volcanism: New evidence from the 1996 eruption. Earth Planet. Sci. Lett. 206, 459–475 (2003).

    Article  Google Scholar 

  30. Sims, K. et al. Aberrant youth: Chemical and isotopic constraints on the origin of off-axis lavas from the East Pacific Rise, 9–10 N. Geochem. Geophys. Geosyst. 4, 8621 (2003).

    Article  Google Scholar 

  31. Fornari, D. J., Haymon, R. M., Perfit, M. R., Gregg, T. K. P. & Edwards, M. H. Axial summit trough of the East Pacific Rise 9–10 N: Geological characteristics and evolution of the axial zone on fast spreading mid-ocean ridges. J. Geophys. Res. 103, 9827–9855 (1998).

    Article  Google Scholar 

  32. Sims, K. W. W. et al. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta 66, 3481–3504 (2002).

    Article  Google Scholar 

  33. Fornari, D. et al. Submarine lava flow emplacement at the East Pacific Rise 950′ N: Implications for uppermost ocean crust stratigraphy and hydrothermal fluid circulation. Geophys. Mono. Ser. 148, 187–217 (2004).

    Google Scholar 

  34. Soule, S. et al. Channelized lava flows at the East Pacific Rise crest 9–10 N: The importance of off-axis lava transport in developing the architecture of young oceanic crust. Geochem. Geophys. Geosyst. 6, Q08005 (2005).

    Article  Google Scholar 

  35. Hooft, E., Schouten, H. & Detrick, R. Constraining crustal emplacement processes from the variation in seismic layer 2A thickness at the East Pacific Rise. Earth Planet. Sci. Lett. 142, 289–309 (1996).

    Article  Google Scholar 

  36. Schouten, H., Tivey, M. A. & Fornari, D. J. AT7-4 Cruise Report, (2001).

  37. Luyendyk, B. & MacDonald, K. C. Spreading center terms and concepts. Geology 4, 369–370 (1976).

    Article  Google Scholar 

  38. Cowen, J. Volcanic eruptions at East Pacific rise near 9 50 N. Eos Trans. AGU 88, 81 (2007).

    Article  Google Scholar 

  39. Sohn, R. A. & Sims, K. W. W. Bending as a mechanism for triggering off-axis volcanism on the East Pacific Rise. Geology 33, 93–96 (2005).

    Article  Google Scholar 

  40. Tucholke, B. E., Behn, M. D., Buck, W. R. & Lin, J. Role of melt supply in oceanic detachment faulting and formation of megamullions. Geology 36, 455–458 (2008).

    Article  Google Scholar 

  41. deMartin, B., Sohn, R. A., Canales, J. P. & Humphris, S. E. Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Geology 35, 711–714 (2007).

    Article  Google Scholar 

  42. Ziv, A., Rubin, A. & Agnon, A. Stability of dike intrusion along preexisting fractures. J. Geophys. Res. 105, 5947–5961 (2000).

    Article  Google Scholar 

  43. Dick, H. J. B. et al. A long in situ section of the lower ocean crust: Results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet. Sci. 179, 31–51 (2000).

    Article  Google Scholar 

  44. Kelemen, P., Kikawa, E., Miller, D. J. & Shipboard-Scientific-Party, Leg 209 Summary: Processes in a 20-km-thick conductive boundary layer beneath the Mid-Atlantic Ridge, 14–16 N. Proc. ODP Sci. Results 209, 1–33 (2007).

    Google Scholar 

  45. Tucholke, B., Fujioka, K., Ishihara, T., Hirth, G. & Kinoshita, M. Submersible study of an oceanic megamullion in the central North Atlantic. J. Geophys. Res. 106, 16145–16162 (2001).

    Article  Google Scholar 

  46. Goldstein, S. J., Murrell, M. T. & Janecky, D. R. Th and U isotopic systematics of basalts from the Juan de Fuca and Gorda Ridges by mass spectrometry. Earth Planet. Sci. Lett. 96, 134–146 (1989).

    Article  Google Scholar 

  47. Volpe, A. M., Olivares, J. A. & Murrell, M. T. q. Determination of radium isotope ratios and abundances in geologic samples by thermal ionization mass spectrometry. Anal. Chem. 63, 913–916 (1991).

    Article  Google Scholar 

  48. Pickett, D. A., Murrell, M. T. & Williams, R. W. Determination of femptogram quantities of protactinium in geological samples by thermal ionization mass spectrometry. Anal. Chem. 66, 91–108 (1996).

    Google Scholar 

  49. Layne, G. & Sims, K. W. W. Secondary ion mass spectrometry for the measurement of 232Th/230Th in volcanic rocks. Int. J. Mass Spectrom. 203, 187–198 (2000).

    Article  Google Scholar 

  50. Ku, T.-L., Knauss, K. G. & Mathieu, G. G. Uranium in open ocean: Concentration and isotopic composition. Deep-Sea Res. 24, 1005–1017 (1977).

    Article  Google Scholar 

  51. Thurber, D. Anomalous 234U/238U in nature. J. Geophys. Res. 67, 4518 (1967).

    Article  Google Scholar 

  52. Robinson, L. F. et al. Primary U distribution in scleractinian corals and its implications for U series dating. Geochem. Geophys. Geosyst. 7, 20 (2006).

    Article  Google Scholar 

  53. Sims, K. W. W. et al. An inter-laboratory assessment of the thorium isotopic composition of synthetic and rock reference materials. Geostand. Geoanal. Res. 32, 65–91 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The analyses and interpretations reported here were made possible by the initial scientific vision and persistence of H. Dick and J. Lin, and the hard work of the KNR162-7 and VAN7 expedition participants. An official review from J. Maclennan vastly improved the clarity and focus of this manuscript. We would also like to thank K. Rubin, M. Behn, J. Morgan, A. Soule, C. Waters and P. Kelemen for informal reviews and fruitful discussions. Interactions during the early stages of this project with D. Smith, H. Schouten and S. Escrig provided useful feedback. This work was supported by the following NSF grants: NSF-OCE 9907630, NSF-OCE 0137325, NSF-OCE 0623838, NSF-OCE 0526905 and NSF-OCE 0527053N.

Author information

Authors and Affiliations

Authors

Contributions

Analytical measurements, data interpretation and manuscript writing efforts were led by J.J.S., with significant input from K.W.W.S. Sample preparation and background work was completed by J.J.S.

Corresponding author

Correspondence to Jared J. Standish.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 516 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Standish, J., Sims, K. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge. Nature Geosci 3, 286–292 (2010). https://doi.org/10.1038/ngeo824

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo824

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing