Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lower levels of the glial cell marker TSPO in drug-naive first-episode psychosis patients as measured using PET and [11C]PBR28

Abstract

Several lines of evidence are indicative of a role for immune activation in the pathophysiology of schizophrenia. Nevertheless, studies using positron emission tomography (PET) and radioligands for the translocator protein (TSPO), a marker for glial activation, have yielded inconsistent results. Whereas early studies using a radioligand with low signal-to-noise in small samples showed increases in patients, more recent studies with improved methodology have shown no differences or trend-level decreases. Importantly, all patients investigated thus far have been on antipsychotic medication, and as these compounds may dampen immune cell activity, this factor limits the conclusions that can be drawn. Here, we examined 16 drug-naive, first-episode psychosis patients and 16 healthy controls using PET and the TSPO radioligand [11C]PBR28. Gray matter (GM) volume of distribution (VT) derived from a two-tissue compartmental analysis with arterial input function was the main outcome measure. Statistical analyses were performed controlling for both TSPO genotype, which is known to affect [11C]PBR28 binding, and gender. There was a significant reduction of [11C]PBR28 VT in patients compared with healthy controls in GM as well as in secondary regions of interest. No correlation was observed between GM VT and clinical or cognitive measures after correction for multiple comparisons. The observed decrease in TSPO binding suggests reduced numbers or altered function of immune cells in brain in early-stage schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Fatouros-Bergman H, Cervenka S, Flyckt L, Edman G, Farde L . Meta-analysis of cognitive performance in drug-naïve patients with schizophrenia. Schizophr Res 2014; 158: 156–162.

    Article  PubMed  Google Scholar 

  2. Arias I, Sorlozano A, Villegas E, de Dios Luna J, McKenney K, Cervilla J et al. Infectious agents associated with schizophrenia: a meta-analysis. Schizophr Res 2012; 136: 128–136.

    Article  PubMed  Google Scholar 

  3. Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  CAS  PubMed Central  Google Scholar 

  4. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B . Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011; 70: 663–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Upthegrove R, Manzanares-Teson N, Barnes NM . Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res 2014; 155: 101–108.

    Article  PubMed  Google Scholar 

  6. Söderlund J, Schröder J, Nordin C, Samuelsson M, Walther-Jallow L, Karlsson H et al. Activation of brain interleukin-1beta in schizophrenia. Mol Psychiatry 2009; 14: 1069–1071.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schwieler L, Larsson MK, Skogh E, Kegel ME, Orhan F, Abdelmoaty S et al. Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia—significance for activation of the kynurenine pathway. J Psychiatry Neurosci 2015; 40: 126–133.

    PubMed  PubMed Central  Google Scholar 

  8. Toth M, Little P, Arnberg F, Mulder J, Halldin C, Ha J et al. Acute neuroinflammation in a clinically relevant focal cortical ischemic stroke model in rat: longitudinal positron emission tomography and immunofluorescent tracking. Brain Struct Funct 2016; 221: 1279–1290.

    Article  CAS  PubMed  Google Scholar 

  9. Ory D, Planas A, Dresselaers T, Gsell W, Postnov A, Celen S et al. PET imaging of TSPO in a rat model of local neuroinflammation induced by intracerebral injection of lipopolysaccharide. Nucl Med Biol 2015; 42: 753–761.

    Article  CAS  PubMed  Google Scholar 

  10. Venneti S, Lopresti BJ, Wiley CA . Molecular imaging of microglia/macrophages in the brain. Glia 2013; 61: 10–23.

    Article  PubMed  Google Scholar 

  11. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 2008; 64: 820–822.

    Article  PubMed  Google Scholar 

  12. Doorduin J, de Vries EFJ, Willemsen ATM, de Groot JC, Dierckx RA, Klein HC . Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009; 50: 1801–1807.

    Article  PubMed  Google Scholar 

  13. Varnäs K, Varrone A, Farde L . Modeling of PET data in CNS drug discovery and development. J Pharmacokinet Pharmacodyn 2013; 40: 267–279.

    Article  PubMed  Google Scholar 

  14. Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [ 11 C]PBR28 PET brain imaging study. Am J Psychiatry 2015; 173: 44–52.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kenk M, Selvanathan T, Rao N, Suridjan I, Rusjan P, Remington G et al. Imaging neuroinflammation in gray and white matter in schizophrenia: an in-vivo pet study with [ 18 F ] -FEPPA. Schizophr Bull 2014; 41: 85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R et al. Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int J Neuropsychopharmacol 2010; 13: 943–950.

    Article  CAS  PubMed  Google Scholar 

  17. Coughlin JM, Wang Y, Ambinder EB, Ward RE, Minn I, Vranesic M et al. In vivo markers of inflammatory response in recent-onset schizophrenia: a combined study using [11C]DPA-713 PET and analysis of CSF and plasma. Transl Psychiatry 2016; 6: e777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drzyzga L, Obuchowicz E, Marcinowska A, Herman ZS . Cytokines in schizophrenia and the effects of antipsychotic drugs. Brain Behav Immun 2006; 20: 532–545.

    Article  CAS  PubMed  Google Scholar 

  19. Danovich L, Veenman L, Leschiner S, Lahav M, Shuster V, Weizman A et al. The influence of clozapine treatment and other antipsychotics on the 18 kDa translocator protein, formerly named the peripheral-type benzodiazepine receptor, and steroid production. Eur Neuropsychopharmacol 2008; 18: 24–33.

    Article  CAS  PubMed  Google Scholar 

  20. Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton MJ, Valmaggia L et al. Predicting psychosis. Arch Gen Psychiatry 2012; 69: 220–229.

    Article  PubMed  Google Scholar 

  21. Kalk NJ, Owen DR, Tyacke RJ, Reynolds R, Rabiner EA, Lingford-Hughes AR et al. Are prescribed benzodiazepines likely to affect the availability of the 18 kDa translocator protein (TSPO) in PET studies? Synapse 2013; 67: 909–912.

    Article  CAS  PubMed  Google Scholar 

  22. Collste K, Forsberg A, Varrone A, Amini N, Aeinehband S, Yakushev I et al. Test–retest reproducibility of [11C]PBR28 binding to TSPO in healthy control subjects. Eur J Nucl Med Mol Imaging 2015; 43: 173–183.

    Article  PubMed  Google Scholar 

  23. Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD et al. The MATRICS consensus cognitive battery, part 1: test selection, reliability, and validity. Am J Psychiatry 2008; 165: 203–213.

    Article  PubMed  Google Scholar 

  24. Kern RS, Nuechterlein KH, Green MF, Baade LE, Fenton WS, Gold JM et al. The MATRICS consensus cognitive battery, part 2: co-norming and standardization. Am J Psychiatry 2008; 165: 214–220.

    Article  PubMed  Google Scholar 

  25. Collste K, Forsberg A, Varrone A, Amini N, Aeinehband S, Yakushev I et al. Test–retest reproducibility of [11C]PBR28 binding to TSPO in healthy control subjects. Eur J Nucl Med Mol Imaging 2016; 43: 173–183.

    Article  CAS  PubMed  Google Scholar 

  26. Varrone A, Sjöholm N, Eriksson L, Gulyás B, Halldin C, Farde L . Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT. Eur J Nucl Med Mol Imaging 2009; 36: 1639–1650.

    Article  PubMed  Google Scholar 

  27. Schain M, Tóth M, Cselényi Z, Stenkrona P, Halldin C, Farde L et al. Quantification of serotonin transporter availability with [ 11C]MADAM - a comparison between the ECAT HRRT and HR systems. Neuroimage 2012; 60: 800–807.

    Article  CAS  PubMed  Google Scholar 

  28. Kanegawa N, Collste K, Forsberg A, Schain M, Arakawa R, Jucaite A et al. In vivo evidence of a functional association between immune cells in blood and brain in healthy human subjects. Brain Behav Immun 2016; 54: 149–157.

    Article  CAS  PubMed  Google Scholar 

  29. Schain M, Varnäs K, Cselényi Z, Halldin C, Farde L, Varrone A . Evaluation of two automated methods for PET region of interest analysis. Neuroinformatics 2014; 12: 551–562.

    Article  PubMed  Google Scholar 

  30. Rizzo G, Veronese M, Tonietto M, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A . Kinetic modeling without accounting for the vascular component impairs the quantification of [(11)C]PBR28 brain PET data. J Cereb Blood Flow Metab 2014; 34: 1060–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Owen DR, Guo Q, Kalk NJ, Colasanti A, Kalogiannopoulou D, Dimber R et al. Determination of [(11)C]PBR28 binding potential in vivo: a first human TSPO blocking study. J Cereb Blood Flow Metab 2014; 34: 989–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Doble A, Malgouris C, Daniel M, Daniel N, Imbault F, Basbaum A et al. Labelling of peripheral-type benzodiazepine binding sites in human brain with [3H]PK 11195: anatomical and subcellular distribution. Brain Res Bull 1987; 18: 49–61.

    Article  CAS  PubMed  Google Scholar 

  33. Lyoo CH, Ikawa M, Liow J-S, Zoghbi SS, Morse C, Pike VW et al. Cerebellum can serve as a pseudo-reference region in Alzheimer’s disease to detect neuroinflammation measured with PET radioligand binding to translocator protein(TSPO). J Nucl Med 2015; 56: 701–707.

    Article  CAS  PubMed  Google Scholar 

  34. Narendran R, Frankle WG . Comment on analyses and conclusions of ‘microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [11C]PBR28 PET brain imaging study’. Am J Psychiatry 2016; 173: 536–537.

    Article  PubMed  Google Scholar 

  35. Bloomfield PS, Howes OD, Turkheimer F, Selvaraj S, Veronese M . Response to Narendran and Frankle: the Interpretation of PET Microglial Imaging in Schizophrenia. Am J Psychiatry 2016; 173: 537–538.

    Article  PubMed  Google Scholar 

  36. Laskaris LE, Di Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E et al. Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol 2015; 173: 666–680.

    Article  Google Scholar 

  37. Kreisl WC, Jenko KJ, Hines CS, Hyoung Lyoo C, Corona W, Morse CL et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab 2013; 33: 53–58.

    Article  CAS  PubMed  Google Scholar 

  38. Kurumaji A, Wakai T, Toru M . Decreases in peripheral-type benzodiazepine receptors in postmortem brains of chronic schizophrenics. J Neural Transm 1997; 104: 1361–1370.

    Article  CAS  PubMed  Google Scholar 

  39. Hohlfeld R, Kerschensteiner M, Meinl E . Dual role of inflammation in CNS disease. Neurology 2007; 68: S58–63–6.

    Article  PubMed  Google Scholar 

  40. Kreisl WC, Jenko KJ, Hines CS, Hyoung Lyoo C, Corona W, Morse CL et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab 2013; 33: 53–58.

    Article  CAS  PubMed  Google Scholar 

  41. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N et al. Schizophrenia risk from complex variation of complement component 4. Nature 2016; 530: 177–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 2014; 17: 400–406.

    Article  CAS  PubMed  Google Scholar 

  43. Cannon TD . How schizophrenia develops: cognitive and brain mechanisms underlying onset of psychosis. Trends Cogn Sci 2015; 19: 744–756.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Swedish Research Council (09114 (LFA); 523-2014-3467 (SC); 2009-7053; 2013-2838 (SE)), Stockholm County Council (ALF; LFA, LF, SC), Swedish Society of Medicine (SLS-332411(SC)), PRIMA Barn-och Vuxenpsykiatri AB (KC), Torsten Söderbergs Stiftelse, Söderström Königska fonden, the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. HEALTH-F2-2011-278850 (INMIND; CH), Centre for Psychiatry Research (HFB). We thank Joachim Eckerström, Martin Szabo and other personnel of KaSP for their help with recruitment of subjects, as well as all members of the PET group at the Karolinska Institutet for their close assistance during this study. We also express our gratitude toward the patients and the healthy volunteers for their participation.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to S Cervenka.

Ethics declarations

Competing interests

LFa is an employee of AstraZeneca and affiliated with KI. SC has received grant support from AstraZeneca as a co-investigator, and has served as a one-off speaker for Roche and Otsuka Pharmaceuticals. SE has received grant support from AstraZeneca as the principal investigator, has served as a one-off speaker for Roche pharmaceuticals and participated in workshops organized by Otsuka Pharmaceuticals. The remaining authors declare no conflict of interest.

Additional information

Karolinska Schizophrenia Project (KaSP) consortium

Supplementary Information accompanies the paper on the Molecular Psychiatry website .

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collste, K., Plavén-Sigray, P., Fatouros-Bergman, H. et al. Lower levels of the glial cell marker TSPO in drug-naive first-episode psychosis patients as measured using PET and [11C]PBR28. Mol Psychiatry 22, 850–856 (2017). https://doi.org/10.1038/mp.2016.247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.247

This article is cited by

Search

Quick links