Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein

Abstract

The Sex-lethal (Sxl) protein of Drosophila melanogaster regulates alternative splicing of the transformer (tra) messenger RNA precursor by binding to the tra polypyrimidine tract during the sex-determination process. The crystal structure has now been determined at 2.6 Å resolution of the complex formed between two tandemly arranged RNA-binding domains of the Sxl protein and a 12-nucleotide, single-stranded RNA derived from the tra polypyrimidine tract. The two RNA-binding domains have their β-sheet platforms facing each other to form a V-shaped cleft. The RNA is characteristically extended and bound in this cleft, where the UGUUUUUUU sequence is specifically recognized by the protein. This structure offers the first insight, to our knowledge, into how a protein binds specifically to a cognate RNA without any intramolecular base-pairing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence and secondary-structure alignment of the RBD(s) of Sxl, U1A and hnRNP A1 (810).
Figure 2: The structure of the complex between the Sxl protein (RBD1–RBD2) and the 12-nucleotide RNA derived from the tra polypyrimidine tract (stereo view).
Figure 3: Distribution of the electrostatic potential on the solvent-accessible surface of Sxl (stereo view).
Figure 4: The U3–U11 (UGUUUUUUU) RNA segment in the complex (stereo view).
Figure 5: Recognition of U3–U11 (UGUUUUUUU) by the Sxl RBD1 and RBD2 domains.
Figure 6: Protein–RNA interactions of the Sxl and U1A RBDs.

Similar content being viewed by others

References

  1. Harford, J. B. & Morris, D. R. mRNA Metabolism and Post-transcriptional Gene Regulation (Wiley-Liss, New York, 1997).

    Google Scholar 

  2. Cline, T. W. & Meyer, B. J. Vive la difference: males vs females in flies vs worms. Annu. Rev. Genet. 30, 637–702 (1996).

    Article  CAS  Google Scholar 

  3. Sosnowski, B. A., Belote, J. M. & McKeown, M. Sex-specific alternative splicing of RNA from the transformer gene results from sequence-dependent splice site blockage. Cell 58, 449–459 (1989).

    Article  CAS  Google Scholar 

  4. Inoue, K., Hoshijima, K., Sakamoto, H. & Shimura, Y. Binding of the Drosophila Sex-lethal gene product to the alternative splice set of transformer primary transcript. Nature 344, 461–463 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Valcárcel, J., Singh, R., Zamore, P. D. & Green, M. R. The protein Sex-lethal antagonizes the splicing factor U2AF to regulate alternative splicing of transformer pre-mRNA. Nature 362, 171–175 (1993).

    Article  ADS  Google Scholar 

  6. Sakashita, E. & Sakamoto, H. Characterization of RNA binding specificity of the Drosophila sex-lethal protein by in vitro ligand selection. Nucleic Acids Res. 22, 4082–4086 (1994).

    Article  CAS  Google Scholar 

  7. Singh, R., Valcárcel, J. & Green, M. R. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268, 1173–1176 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Burd, C. G. & Dreyfuss, G. Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Birney, E., Kumar, S. & Krainer, A. R. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing. Nucleic Acids Res. 21, 5803–5816 (1993).

    Article  CAS  Google Scholar 

  10. Varani, G. & Nagai, K. RNA recognition by RNP proteins during RNA processing. Annu. Rev. Biopys. Biomol. Struct. 27, 407–445 (1998).

    Article  CAS  Google Scholar 

  11. Nagai, K., Oubridge, C., Jessen, T. H., Li, J. & Evans, P. R. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature 348, 515–520 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Oubridge, C., Ito, N., Evans, P., Teo, C.-H. & Nagai, K. Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372, 432–438 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Allain, F. H.-T. et al. Specificity of ribonucleoprotein interaction determined by RNA folding during complex formation. Nature 380, 646–650 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Price, S. R., Evans, P. R. & Nagai, K. Crystal structure of the spliceosomal U2B″-U2A′ protein complex bound to a fragment of U2 small nuclear RNA. Nature 394, 645–650 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Kanaar, R., Lee, A. L., Rudner, D. Z., Wemmer, D. E. & Rio, D. C. Interaction of the Sex-lethal RNA binding domains with RNA. EMBO J. 14, 4530–4539 (1995).

    Article  CAS  Google Scholar 

  16. Sakashita, E. & Sakamoto, H. Protein–RNA and protein–protein interactions of the Drosophila Sex-lethal mediated by its RNA-binding domains. J. Biochem. 120, 1028–1033 (1996).

    Article  CAS  Google Scholar 

  17. Samuels, M., Deshpande, G. & Schedl, P. Activities of the Sex-lethal protein in RNA binding and protein:protein interactions. Nucleic Acids Res. 26, 2625–2637 (1998).

    Article  CAS  Google Scholar 

  18. Inoue, M. et al. Acharacteristic arrangement of aromatic amino acid residues in the solution structure of the amino-terminal RNA-binding domain of Drosophila Sex-lethal. J. Mol. Biol. 272, 82–94 (1997).

    Article  CAS  Google Scholar 

  19. Lee, A. L., Kanaar, R., Rio, D. C. & Wemmer, D. E. Resonance assignments and solution structure of the second RNA-binding domain of Sex-lethal determined by multidimensional heteronuclear magnetic resonance. Biochemistry 33, 13775–13786 (1994).

    Article  CAS  Google Scholar 

  20. Shamoo, Y., Krueger, U., Rice, L. M., Williams, K. R. & Steitz, T. A. Crystal structure of the two RNA-binding domains of human hnRNP A1 at 1.75 Å resolution. Nature Struct. Biol. 4, 215–222 (1997).

    Article  CAS  Google Scholar 

  21. Xu, R.-M., Jokhan, L., Cheng, X., Mayeda, A. & Krainer, A. R. Crystal structure of human UP1, the domain of hnRNP A1 that contains two RNA-recognition motifs. Structure 5, 559–570 (1997).

    Article  CAS  Google Scholar 

  22. Simons, R. W. & Grunberg-Manago, M. RNA Structure and Function.(Cold Spring Harbor Laboratory Press, New York, 1998).

    Google Scholar 

  23. Valegárd, K., Murray, J. B., Stockley, P. G., Stonehouse, N. J. & Liljas, L. Crystal structure of an RNA bacteriophage coat protein–operator complex. Nature 371, 623–626 (1994).

    Article  ADS  Google Scholar 

  24. Puglisi, J. D., Chen, L., Blanchard, S. & Frankel, A. D. Solution structure of a bovine immunodeficiency virus Tat-TAR peptide–RNA complex. Science 270, 1200–1203 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Battiste, J. L. et al. αHelix–RNA major groove recognition in an HIV-1 Rev peptide-RRE RNA complex. Science 273, 1547–1551 (1996).

    Article  ADS  CAS  Google Scholar 

  26. De Guzman, R. N. et al. Structure of the HIV-1 nucleocapsid protein bound to the SL3 Ψ-RNA recognition element. Science 279, 384–388 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Cai, Z. et al. Solution structure of P22 transcriptional antitermination N peptide-box B RNA complex. Nature Struct. Biol. 5, 203–212 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Lee, A. L. et al. Chemical shift mapping of the RNA-binding interface of the multiple-RBD protein Sex-lethal. Biochemistry 36, 14306–14317 (1997).

    Article  CAS  Google Scholar 

  29. Hall, K. B. Interaction of RNA hairpins with the human U1A N-terminal RNA binding domain. Biochemistry 33, 10076–10088 (1994).

    Article  CAS  Google Scholar 

  30. Good, P. J. The role of elav -like genes, a conserved family encoding RNA-binding proteins, in growth and development. Semin. Cell Dev. Biol. 8, 577–584 (1997).

    Article  CAS  Google Scholar 

  31. Fan, X. C. & Steitz, J. A. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 17, 3448–3460 (1998).

    Article  CAS  Google Scholar 

  32. Peng, S. S.-Y., Chen, C.-Y. A., Xu, N. & Shyu, A.-B. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 17, 3461–3470 (1998).

    Article  CAS  Google Scholar 

  33. Rould, M. A., Perona, J. J. & Steitz, T. A. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature 352, 213–218 (1991).

    Article  ADS  CAS  Google Scholar 

  34. Cavarelli, J., Rees, B., Ruff, M., Thierry, J.-C. & Moras, D. Yeast tRNAAsp recognition by its cognate class II aminoacyl-tRNA synthetase. Nature 362, 181–184 (1993).

    Article  ADS  CAS  Google Scholar 

  35. Biou, V., Yaremchuk, A., Tukalo, M. & Cusack, S. The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNASer. Science 263, 1404–1410 (1994).

    Article  ADS  CAS  Google Scholar 

  36. Cusack, S., Yaremchuk, A. & Tukalo, M. The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNALys and a T. thermophilus tRNALys transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. EMBO J. 15, 6321–6334 (1996).

    Article  CAS  Google Scholar 

  37. Cusack, S., Yaremchuk, A., Krikliviy, I. & Tukalo, M. tRNAPro anticodon recognition by Thermus thermophilus prolyl-tRNA synthetase. Structure 6, 101–108 (1998).

    Article  CAS  Google Scholar 

  38. Shamoo, Y., Abdul-Manan, N. & Williams, K. R. Multiple RNA binding domains (RBDs) just don't add up. Nucleic Acids Res. 23, 725–728 (1995).

    Article  CAS  Google Scholar 

  39. McKay, S. J. & Cooke, H. hn RNP A2/B1 binds specifically to single stranded vertebrate telomeric repeat TTAGGGn. Nucleic Acids Res. 20, 6461–6464 (1992).

    Article  CAS  Google Scholar 

  40. Kajita, Y., Nakayama, J., Aizawa, M. & Ishikawa, F. The UUAG-specific RNA binding protein, heterogenous nuclear ribonucleoprotein D0. J. Biol. Chem. 270, 22167–22175 (1995).

    Article  CAS  Google Scholar 

  41. Sarig, G., Weisman-Shomer, P., Erlitzki, R. & Fry, M. Purification and characterization of qTBP42, a new single-stranded and quadruplex telomeric DNA-binding protein from rat hepatocytes. J. Biol. Chem. 272, 4474–4482 (1997).

    Article  CAS  Google Scholar 

  42. Kim, I. et al. NMR analysis of the hydrogen bonding interactions of the RNA-binding domains of the Drosophila Sex-lethal protein with target RNA fragments with site-specific [3-15N]uridine substitutions. Nucleic Acids Res. 25, 1565–1569 (1997).

    Article  CAS  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  44. CCP4: Collaborative Computational Project No. 4. Acta Crystallogr. D 50, 760–763 (1994).

  45. Jones, T. A., Zhou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta. Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  46. Brünger, A. T. X-PLOR: A System for X-Ray Crystallography and NMR(Yale Univ. Press, New Haven, 1992).

    Google Scholar 

  47. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  48. Kraulis, P. Molscript: a program to produce both detailed and schematic plots of protein structures. J.Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  49. Merritt, E. A. & Bacon, D. J. Raster3D photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  50. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55, 29–32 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. G. Vassylyev for helpful discussions, and M. Horikoshi for data collection. This work was supported in part by Grants-in-Aid for Scientific Research on Priority Areas to S.Y. from the Ministry of Education, Science, Culture and Sports of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyuki Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handa, N., Nureki, O., Kurimoto, K. et al. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature 398, 579–585 (1999). https://doi.org/10.1038/19242

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19242

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing