Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anticancer activity of an adenoviral vector expressing short hairpin RNA against BK virus T-ag

Abstract

The human polyomavirus BK (BKV) is oncogenic in rodents and induces malignant transformation of rodent cells in vitro. Although its role in human tumorigenesis is still debated, BKV represents an excellent model to evaluate molecularly targeted antineoplastic approaches. Here, we have tested whether stable suppression of the T antigen (T-ag) oncogene expression could inhibit the in vitro and in vivo malignant phenotype of BKV-transformed mouse cells. An adenovirus vector system that expresses small hairpin RNAs (shRNAs), which are converted into active small interfering RNAs (siRNA) molecules against the BKV T-ag, was developed. This vector was able to inhibit the expression of BKV T-ag through a highly efficient in vitro and in vivo delivery of the siRNA molecule. In addition, it allowed a stable expression of siRNA for a period of time sufficient to elicit a biological effect. Inhibition of T-ag expression results in reduction of the in vitro growth rate of BKV-transformed cells, which is, at least in part, caused by restoration of p53 activity and induction of apoptosis. In vivo studies proved that adenovirus vectors expressing anti-T-ag siRNA were able to suppress tumorigenicity of BKV-transformed cells. Moreover, adenovirus vector direct treatment of growing tumors resulted in a significant reduction of tumor growth. This study indicates that siRNAs delivery via a viral vector have a potential usefulness as i n vivo anticancer tool against viral and cellular oncogenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Portolani M, Barbanti-Brodano G, Placa ML . Malignant transformation of hamster kidney cells by BK virus. J Virol 1975; 15: 420–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Grossi MP, Caputo A, Meneguzzi G, Corallini A, Carra L, Portolani M et al. Transformation of human embryonic fibroblasts by BK virus, BK virus DNA and a subgenomic BK virus DNA fragment. J Gen Virol 1982; 63: 393–403.

    Article  CAS  PubMed  Google Scholar 

  3. van der Noordaa J . Infectivity, oncogenicity and transforming ability of BK virus and BK virus DNA. J Gen Virol 1976; 30: 371–373.

    Article  CAS  PubMed  Google Scholar 

  4. Portolani M, Borgatti M . Stable transformation of mouse, rabbit and monkey cells and abortive transformation of human cells by BK virus, a human papovavirus. J Gen Virol 1978; 38: 369–374.

    Article  CAS  PubMed  Google Scholar 

  5. Corallini A, Altavilla G, Cecchetti MG, Fabris G, Grossi MP, Balboni PG et al. Ependymomas, malignant tumors of pancreatic islets, and osteosarcomas induced in hamsters by BK virus, a human papovavirus. J Natl Cancer Inst 1978; 61: 875–883.

    CAS  PubMed  Google Scholar 

  6. Seehafer J, Downer DN, Salmi A, Colter JS . Isolation and characterization of BK virus-transformed rat and mouse cells. J Gen Virol 1979; 42: 567–578.

    Article  CAS  PubMed  Google Scholar 

  7. Tognon M, Corallini A, Martini F, Negrini M, Barbanti-Brodano G . Oncogenic transformation by BK virus and association with human tumors. Oncogene 2003; 22: 5192–5200.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu JY, Abate M, Rice PW, Cole CN . The ability of simian virus 40 large T antigen to immortalize primary mouse embryo fibroblasts cosegregates with its ability to bind to p53. J Virol 1991; 65: 6872–6880.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin JY, Simmons DT . The ability of large T antigen to complex with p53 is necessary for the increased life span and partial transformation of human cells by simian virus 40. J Virol 1991; 65: 6447–6453.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ludlow JW, DeCaprio JA, Huang CM, Lee WH, Paucha E, Livingston DM . SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell 1989; 56: 57–65.

    Article  CAS  PubMed  Google Scholar 

  11. Ludlow JW, Shon J, Pipas JM, Livingston DM, DeCaprio JA . The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T. Cell 1990; 60: 387–396.

    Article  CAS  PubMed  Google Scholar 

  12. Caputo A, Corallini A, Grossi MP, Carra L, Balboni PG, Negrini M et al. Episomal DNA of a BK virus variant in a human insulinoma. J Med Virol 1983; 12: 37–49.

    Article  CAS  PubMed  Google Scholar 

  13. Pagnani M, Negrini M, Reschiglian P, Corallini A, Balboni PG, Scherneck S et al. Molecular and biological properties of BK virus-IR, a BK virus variant isolated from a human tumor. J Virol 1987; 59: 500–505.

    Google Scholar 

  14. Nakshatri H, Pater MM, Pater A . Functional role of BK virus tumor antigens in transformation. J Virol 1988; 62: 4613–4621.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tegtmeyer P . Function of simian virus 40 gene A in transforming infection. J Virol 1975; 15: 613–618.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin RG, Chou JY . Simian virus 40 functions required for the establishment and maintenance of malignant transformation. J Virol 1975; 15: 599–612.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Osborn M, Weber K . Simian virus 40 gene A function and maintenance of transformation. J Virol 1975; 15: 636–644.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Brugge JS, Butel JS . Role of simian virus 40 gene A function in maintenance of transformation. J Virol 1975; 15: 619–635.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Waheed I, Guo ZS, Chen GA, Weiser TS, Nguyen DM, Schrump DS . Antisense to SV40 early gene region induces growth arrest and apoptosis in T-antigen-positive human pleural mesothelioma cells. Cancer Res 1999; 59: 6068–6073.

    CAS  PubMed  Google Scholar 

  20. Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA . Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 1999; 13: 3191–3197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharp PA, Zamore PD . Molecular biology. RNA interference. Science 2000; 287: 2431–2433.

    Article  CAS  PubMed  Google Scholar 

  22. McManus MT, Sharp PA . Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002; 3: 737–747.

    Article  CAS  PubMed  Google Scholar 

  23. Bernstein E, Caudy AA, Hammond SM, Hannon GJ . Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363–366.

    Article  CAS  PubMed  Google Scholar 

  24. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH . Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15: 2654–2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elbashir SM, Lendeckel W, Tuschl T . RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001; 15: 188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  27. Elbashir SM, Harborth J, Weber K, Tuschl T . Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 2002; 26: 199–213.

    Article  CAS  PubMed  Google Scholar 

  28. Negrini M, Castagnoli A, Pavan G, Sabbioni S, Araujo D, Corallini A et al. Tumorigenicity and anchorage-independent growth suppression of BK virus transformed mouse cells by human chromosome 11. Cancer Res 1992; 52: 1297–1303.

    CAS  PubMed  Google Scholar 

  29. Kim DW, Uetsuki T, Kaziro Y, Yamaguchi N, Sugano S . Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. Gene 1990; 91: 217–223.

    Article  CAS  PubMed  Google Scholar 

  30. Takebe Y, Seiki M, Fujisawa J, Hoy P, Yokota K, Arai K et al. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol 1988; 8: 466–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arts GJ, Langemeijer E, Tissingh R, Ma L, Pavliska H, Dokic K et al. Adenoviral vectors expressing siRNAs for discovery and validation of gene function. Genome Res 2003; 13: 2325–2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

  33. Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H . Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 2002; 32: 107–108.

    Article  CAS  PubMed  Google Scholar 

  34. Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt FJ et al. siRNA relieves chronic neuropathic pain. Nucleic Acids Res 2004; 32: e49.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis 2003; 9: 210–216.

    CAS  PubMed  Google Scholar 

  36. Brummelkamp TR, Bernards R, Agami R . Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002; 2: 243–247.

    Article  CAS  PubMed  Google Scholar 

  37. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406.

    Article  CAS  PubMed  Google Scholar 

  38. Shen C, Buck AK, Liu X, Winkler M, Reske SN . Gene silencing by adenovirus-delivered siRNA. FEBS Lett 2003; 539: 111–114.

    Article  CAS  PubMed  Google Scholar 

  39. Carette JE, Overmeer RM, Schagen FH, Alemany R, Barski OA, Gerritsen WR et al. Conditionally replicating adenoviruses expressing short hairpin RNAs silence the expression of a target gene in cancer cells. Cancer Res 2004; 64: 2663–2667.

    Article  CAS  PubMed  Google Scholar 

  40. Bain JR, Schisler JC, Takeuchi K, Newgard CB, Becker TC . An adenovirus vector for efficient RNA interference-mediated suppression of target genes in insulinoma cells and pancreatic islets of langerhans. Diabetes 2004; 53: 2190–2194.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao LJ, Jian H, Zhu H . Specific gene inhibition by adenovirus-mediated expression of small interfering RNA. Gene 2003; 316: 137–141.

    Article  CAS  PubMed  Google Scholar 

  42. Barbanti-Brodano G, Sabbioni S, Martini F, Negrini M, Corallini A, Tognon M . Simian virus 40 infection in humans and association with human diseases: results and hypotheses. Virology 2004; 318: 1–9.

    Article  CAS  PubMed  Google Scholar 

  43. Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F . siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 2003; 22: 5938–5945.

    Article  CAS  PubMed  Google Scholar 

  44. Yoshinouchi M, Yamada T, Kizaki M, Fen J, Koseki T, Ikeda Y et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol Ther 2003; 8: 762–768.

    Article  CAS  PubMed  Google Scholar 

  45. Wilda M, Fuchs U, Wossmann W, Borkhardt A . Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 2002; 21: 5716–5724.

    Article  CAS  PubMed  Google Scholar 

  46. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432: 173–178.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Giuseppe Barbanti-Brodano for critical review of the paper. We thank Augusto Bevilacqua, Pietro Zucchini, Annalisa Peverati and Iva Pivanti for the excellent technical support. This work was supported by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC) and by the Italian Ministero dell’Istruzione, Università e Ricerca scientifica (MIUR) and by Comitato dei Sostenitori – Progetto CAN2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Negrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabbioni, S., Callegari, E., Spizzo, R. et al. Anticancer activity of an adenoviral vector expressing short hairpin RNA against BK virus T-ag. Cancer Gene Ther 14, 297–305 (2007). https://doi.org/10.1038/sj.cgt.7701014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701014

Keywords

Search

Quick links