Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Epigenetic regulation of protein tyrosine phosphatases: potential molecular targets for cancer therapy

Abstract

Promoter methylation-mediated silencing is a hallmark of many established tumor suppressor genes. This review focuses on the methylation and suppression of a receptor-type tyrosine phosphatase gene, PTPRO, in a variety of solid and liquid tumors. In addition, PTPRO exhibits many other characteristics of a bona fide tumor suppressor. Reactivation of genes silenced by methylation using inhibitors of DNA methyltransferases and histone deacetylases, and the potential application of PTPRO as a molecular target for cancer therapy have been discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Bird A . DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.

    Article  CAS  PubMed  Google Scholar 

  2. Jones PA, Baylin SB . The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–428.

    Article  CAS  PubMed  Google Scholar 

  3. Feinberg AP, Tycko B . The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–153.

    Article  CAS  PubMed  Google Scholar 

  4. Wade PA, Gegonne A, Jones PL, et al. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet. 1999;23:62–66.

    Article  CAS  PubMed  Google Scholar 

  5. Wade PA, Jones PL, Vermaak D, et al. A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol. 1998;8:843–846.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Ng HH, Erdjument-Bromage H, et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999;13:1924–1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sakai H, Urano T, Ookata K, et al. MBD3 and HDAC1, two components of the NuRD complex, are localized at Aurora-A-positive centrosomes in M phase. J Biol Chem. 2002;277:48714–48723.

    Article  CAS  PubMed  Google Scholar 

  8. Costello JF, Fruhwald MC, Smiraglia DJ, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns [see comments]. Nat Genet. 2000;24:132–138.

    Article  CAS  PubMed  Google Scholar 

  9. Baylin SB, Herman JG, Graff JR, et al. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–196.

    Article  CAS  PubMed  Google Scholar 

  10. Jones PA, Laird PW . Cancer epigenetics comes of age. Nat Genet. 1999;21:163–167.

    Article  CAS  PubMed  Google Scholar 

  11. Sakai T, Toguchida J, Ohtani N, et al. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet. 1991;48:880–888.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Myohanen SK, Baylin SB, Herman JG . Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res. 1998;58:591–593.

    CAS  PubMed  Google Scholar 

  13. Batova A, Diccianni MB, Yu JC, et al. Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell acute lymphoblastic leukemia. Cancer Res. 1997;57:832–836.

    CAS  PubMed  Google Scholar 

  14. Esteller M, Fraga MF, Guo M, et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet. 2001;10:3001–3007.

    Article  CAS  PubMed  Google Scholar 

  15. Herman JG, Baylin SB . Gene silencing in cancer in association with promoter hypermethylation. [see comment]. N Engl J Med. 2003;349:2042–2054.

    Article  CAS  PubMed  Google Scholar 

  16. Baylin SB, Herman JG . DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16:168–174.

    Article  CAS  PubMed  Google Scholar 

  17. El-Osta A . The rise and fall of genomic methylation in cancer. Leukemia. 2004;18:233–237.

    Article  CAS  PubMed  Google Scholar 

  18. Hunter T . Signaling — 2000 and beyond. Cell. 2000;100:113–127.

    Article  CAS  PubMed  Google Scholar 

  19. Fischer EH . Cell signaling by protein tyrosine phosphorylation. Adv Enzyme Regul. 1999;39:359–369.

    Article  CAS  PubMed  Google Scholar 

  20. Maroun CR, Naujokas MA, Holgado-Madruga M, et al. The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol. 2000;20:8513–8525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meng TC, Fukada T, Tonks NK . Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell. 2002;9:387–399.

    Article  CAS  PubMed  Google Scholar 

  22. Palka HL, Park M, Tonks NK . Hepatocyte growth factor receptor tyrosine kinase met is a substrate of the receptor protein-tyrosine phosphatase DEP-1. J Biol Chem. 2003;278:5728–5735.

    Article  CAS  PubMed  Google Scholar 

  23. Hermiston ML, Xu Z, Majeti R, et al. Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J Clin Invest. 2002;109:9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gupta S, Radha V, Sudhakar C, et al. A nuclear protein tyrosine phosphatase activates p53 and induces caspase-1-dependent apoptosis. FEBS Lett. 2002;532:61–66.

    Article  CAS  PubMed  Google Scholar 

  25. Salmeen A, Andersen JN, Myers MP, et al. Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol Cell. 2000;6:1401–1412.

    Article  CAS  PubMed  Google Scholar 

  26. Alonso A, Sasin J, Bottini N, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117:699–711.

    Article  CAS  PubMed  Google Scholar 

  27. Panagopoulos I, Pandis N, Thelin S, et al. The FHIT and PTPRG genes are deleted in benign proliferative breast disease associated with familial breast cancer and cytogenetic rearrangements of chromosome band 3p14. Cancer Res. 1996;56:4871–4875.

    CAS  PubMed  Google Scholar 

  28. Zhang Y, Siebert R, Matthiesen P, et al. Cytogenetical assignment and physical mapping of the human R-PTP-kappa gene (PTPRK) to the putative tumor suppressor gene region 6q22.2–q22.3. Genomics. 1998;51:309–311.

    Article  CAS  PubMed  Google Scholar 

  29. Ruivenkamp CA, van Wezel T, Zanon C, et al. Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat Genet. 2002;31:295–300.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Shen D, Parsons DW, et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science. 2004;304:1164–1166.

    Article  CAS  PubMed  Google Scholar 

  31. Andersen JN, Jansen PG, Echwald SM, et al. A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J. 2004;18:8–30.

    Article  CAS  PubMed  Google Scholar 

  32. Ardini E, Agresti R, Tagliabue E, et al. Expression of protein tyrosine phosphatase alpha (RPTPalpha) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo. Oncogene. 2000;19:4979–4987.

    Article  CAS  PubMed  Google Scholar 

  33. Motiwala T, Ghoshal K, Das A, et al. Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene. 2003;22:6319–6331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Motiwala T, Kutay H, Ghoshal K, et al. Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer. Proc Natl Acad Sci USA. 2004;101:13844–13849 Epub 12004 Sep 13848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Imreh S, Klein G, Zabarovsky ER . Search for unknown tumor-antagonizing genes. Genes, Chromosomes Cancer. 2003;38:307–321.

    Article  CAS  PubMed  Google Scholar 

  36. Mori Y, Yin J, Sato F, et al. Identification of genes uniquely involved in frequent microsatellite instability colon carcinogenesis by expression profiling combined with epigenetic scanning. Cancer Res. 2004;64:2434–2438.

    Article  CAS  PubMed  Google Scholar 

  37. Oka T, Ouchida M, Koyama M, et al. Gene silencing of the tyrosine phosphatase SHP1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res. 2002;62:6390–6394.

    CAS  PubMed  Google Scholar 

  38. Amoui M, Baylink DJ, Tillman JB, et al. Expression of a structurally unique osteoclastic protein-tyrosine phosphatase is driven by an alternative intronic, cell type-specific promoter. J Biol Chem. 2003;278:44273–44280.

    Article  CAS  PubMed  Google Scholar 

  39. Mancini DN, Singh SM, Archer TK, et al. Site-specific DNA methylation in the neurofibromatosis (NF1) promoter interferes with binding of CREB and SP1 transcription factors. Oncogene. 1999;18:4108–4119.

    Article  CAS  PubMed  Google Scholar 

  40. DiNardo DN, Butcher DT, Robinson DP, et al. Functional analysis of CpG methylation in the BRCA1 promoter region. Oncogene. 2001;20:5331–5340.

    Article  CAS  PubMed  Google Scholar 

  41. Santoro R, Grummt I . Molecular mechanisms mediating methylation-dependent silencing of ribosomal gene transcription. Mol Cell. 2001;8:719–725.

    Article  CAS  PubMed  Google Scholar 

  42. Jenuwein T, Allis CD . Translating the histone code. Science. 2001;293:1074–1080.

    Article  CAS  PubMed  Google Scholar 

  43. Kass SU, Wolffe AP . DNA methylation, nucleosomes and the inheritance of chromatin structure and function. Novartis Found Symp. 1998;214:22–35; discussion 36–50.

    CAS  PubMed  Google Scholar 

  44. Ghoshal K, Majumder S, Datta J, et al. Role of human ribosomal RNA (rRNA) promoter methylation and of methyl-CpG-binding protein MBD2 in the suppression of rRNA gene expression. J Biol Chem. 2004;279:6783–6793.

    Article  CAS  PubMed  Google Scholar 

  45. Taylor SM, Jones PA . Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979;17:771–779.

    Article  CAS  PubMed  Google Scholar 

  46. Baylin SB . Reversal of gene silencing as a therapeutic target for cancer — roles for DNA methylation and its interdigitation with chromatin. Novartis Found Symp. 2004;259:226–233; discussion 234–227.

    CAS  PubMed  Google Scholar 

  47. Karpf AR, Jones DA . Reactivating the expression of methylation silenced genes in human cancer. Oncogene. 2002;21:5496–5503.

    Article  CAS  PubMed  Google Scholar 

  48. Jain PK . Epigenetics: the role of methylation in the mechanism of action of tumor suppressor genes. Ann NY Acad Sci. 2003;983:71–83.

    Article  CAS  PubMed  Google Scholar 

  49. Majumder S, Ghoshal K, Datta J, et al. Role of de novo DNA methyltransferases and methyl CpG-binding proteins in gene silencing in a rat hepatoma. J Biol Chem. 2002;277:16048–16058.

    Article  CAS  PubMed  Google Scholar 

  50. Ghoshal K, Majumder S, Li Z, et al. Suppression of metallothionein gene expression in a rat hepatoma because of promoter-specific DNA methylation. J Biol Chem. 2000;275:539–547.

    Article  CAS  PubMed  Google Scholar 

  51. Creusot F, Acs G, Christman JK . Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. J Biolog Chem. 1982;257:2041–2048.

    CAS  Google Scholar 

  52. Christman JK . 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21:5483–5495.

    Article  CAS  PubMed  Google Scholar 

  53. Claus R, Lubbert M . Epigenetic targets in hematopoietic malignancies. Oncogene. 2003;22:6489–6496.

    Article  CAS  PubMed  Google Scholar 

  54. Jones PA, Taylor SM, Wilson VL . Inhibition of DNA methylation by 5-azacytidine. Rec Results Cancer Res. 1983;84:202–211.

    CAS  Google Scholar 

  55. Jeltsch A . Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases [erratum appears in Chembiochem 2002 May 3;3(5):382]. Chembiochem:3:274–293.

    Article  CAS  PubMed  Google Scholar 

  56. Bestor TH . The DNA methyltransferases of mammals. Humn Mol Genet. 2000;9:2395–2402.

    Article  CAS  Google Scholar 

  57. Gius D, Cui H, Bradbury CM, et al. Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell. 2004;6:361–371.

    Article  CAS  PubMed  Google Scholar 

  58. Ghoshal K, Datta J, Majumder S, et al. Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein I promoter by activating the transcription factor MTF-1 and forming an open chromatin structure. Mol Cell Biol. 2002;22:8302–8319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suzuki H, Gabrielson E, Chen W, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. [see comment]. Nat Genet. 2002;31:141–149.

    Article  CAS  PubMed  Google Scholar 

  60. Grunstein M . Histone acetylation in chromatin structure and transcription. Nature. 1997;389:349–352.

    Article  CAS  PubMed  Google Scholar 

  61. Lachner M, Jenuwein T . The many faces of histone lysine methylation. Curr Opin Cell Biol. 2002;14:286–298.

    Article  CAS  PubMed  Google Scholar 

  62. de Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370:737–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Belinsky SA, Klinge DM, Stidley CA, et al. Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res. 2003;63:7089–7093.

    CAS  PubMed  Google Scholar 

  64. Shaker S, Bernstein M, Momparler RL . Antineoplastic action of 5-aza-2′-deoxycytidine (Dacogen) and depsipeptide on Raji lymphoma cells. Oncol Rep. 2004;11:1253–1256.

    CAS  PubMed  Google Scholar 

  65. Kouraklis G, Theocharis S . Histone deacetylase inhibitors and anticancer therapy. Curr Med Chem — Anti-Cancer Agents. 2002;2:477–484.

    Article  CAS  PubMed  Google Scholar 

  66. Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21:103–107.

    Article  CAS  PubMed  Google Scholar 

  67. Wharram BL, Goyal M, Gillespie PJ, et al. Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate. J Clin Invest. 2000;106:1281–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu GL, Bestor TH, Bourc”his D, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 1999;402:187–191.

    Article  CAS  PubMed  Google Scholar 

  69. Pogribny IP, Miller BJ, James SJ . Alterations in hepatic p53 gene methylation patterns during tumor progression with folate/methyl deficiency in the rat. Cancer Lett. 1997;115:31–38.

    Article  CAS  PubMed  Google Scholar 

  70. Baylin S, Bestor TH . Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell. 2002;1:299–305.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Kalpana Ghoshal and Sarmila Majumder for useful comments. We regret that many excellent papers relevant to this review could not be cited due to space limitation. The work in the authors’ laboratory was supported by grants (CA 81024 and CA 86978) from the National Cancer Institute and ES 10874 from the National Institute of Environmental Health Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samson T Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, S., Motiwala, T. Epigenetic regulation of protein tyrosine phosphatases: potential molecular targets for cancer therapy. Cancer Gene Ther 12, 665–672 (2005). https://doi.org/10.1038/sj.cgt.7700828

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700828

Keywords

This article is cited by

Search

Quick links