Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A multiprong approach to cancer gene therapy by coencapsulated cells

Abstract

Immune-isolation of nonautologous cells with microencapsulation protects these cells from graft rejection, thus allowing the same recombinant therapeutic cell line to be implanted in different recipients. This approach was successful in treating HER2/neu-expressing tumors in mice by delivering an interleukin-2 fusion protein (sFvIL-2), or angiostatin. However, treatment with interleukin-2 led to profuse inflammation, while angiostatin delivery did not result in long-term tumor suppression, in part due to endothelial cell-independent neovascularization (vascular mimicry). We hypothesize that coencapsulating the two producer cells in the same microcapsules may enhance the efficacy and ameliorate the above side effects. Hence, B16-F0/neu tumor-bearing mice were implanted with sFvIL-2- and angiostatin-secreting cells coencapsulated in the same alginate-poly-L-lysine-alginate microcapsules. However, this protocol only produced an incremental but not synergistic improvement, as measured with greater tumor suppression and improved survival. Compared to the single sFvIL-2 treatment, the coencapsulation protocol showed improved efficacy associated with: mobilization of sFvIL-2 from the spleen; a higher level of cytokine delivery systemically and to the tumors; increased tumor and tumor-associated endothelial cell apoptosis; and a reduced host inflammatory response. However, compared to the single angiostatin treatment, the efficacy was reduced, primarily due to a “bystander” effect in which the angiostatin-secreting cells suffered similar transgene silencing as the coencapsulated cytokine-secreting cells. Nevertheless, the level of “vascular mimicry” of the single angiostatin treatment was significantly reduced. Hence, while there was no synergy in efficacy, an incremental improvement and some reduction in undesirable side effects of inflammation and vascular mimicry were achieved over the single treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. al Hendy A, Hortelano G, Tannenbaum GS, Chang PL . Correction of the growth defect in dwarf mice with nonautologous microencapsulated myoblasts — an alternate approach to somatic gene therapy. Hum Gene Ther. 1995;6:165–175.

    Article  CAS  PubMed  Google Scholar 

  2. Ross CJ, Ralph M, Chang PL . Somatic gene therapy for a neurodegenerative disease using microencapsulated recombinant cells. Exp Neurol. 2000;166:276–286.

    Article  CAS  PubMed  Google Scholar 

  3. Ross CJ, Bastedo L, Maier SA, Sands MS, Chang PL . Treatment of a lysosomal storage disease, mucopolysaccharidosis VII, with microencapsulated recombinant cells. Hum Gene Ther. 2000;11:2117–2127.

    Article  CAS  PubMed  Google Scholar 

  4. Van Raamsdonk JM, Ross CJ, Potter MA, et al. Treatment of hemophilia B in mice with nonautologous somatic gene therapeutics. J Lab Clin Med. 2002;139:35–42.

    Article  CAS  PubMed  Google Scholar 

  5. Dautzenberg H, Schuldt U, Grasnick G, et al. Development of cellulose sulfate-based polyelectrolyte complex microcapsules for medical applications. Ann N Y Acad Sci. 1999;875:46–63.

    Article  CAS  PubMed  Google Scholar 

  6. Muller P, Jesnowski R, Karle P, et al. Injection of encapsulated cells producing an ifosfamide-activating cytochrome P450 for targeted chemotherapy to pancreatic tumors. Ann NY Acad Sci. 1999;880:337–351.

    Article  CAS  PubMed  Google Scholar 

  7. Lohr M, Muller P, Karle P, et al. Targeted chemotherapy by intratumour injection of encapsulated cells engineered to produce CYP2B1, an ifosfamide activating cytochrome P450. Gene Ther. 1998;5:1070–1078.

    Article  CAS  PubMed  Google Scholar 

  8. Kroger JC, Bergmeister H, Hoffmeyer A, et al. Intraarterial instillation of microencapsulated cells in the pancreatic arteries in pig. Ann NY Acad Sci. 1999;880:374–378.

    Article  CAS  PubMed  Google Scholar 

  9. Fujiki T, Futatsuki K, Akazawa S, et al. [Ifosfamide chemotherapy ineffective for advanced pancreatic carcinoma]. Gan To Kagaku Ryoho. 1997;24:569–572.

    CAS  PubMed  Google Scholar 

  10. Cirone P, Bourgeois JM, Austin RC, Chang PL . A novel approach to tumor suppression with microencapsulated recombinant cells. Hum Gene Ther. 2002;13:1157–1166.

    Article  CAS  PubMed  Google Scholar 

  11. Folkman J . Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–1186.

    Article  CAS  PubMed  Google Scholar 

  12. O'Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79:315–328.

    Article  CAS  PubMed  Google Scholar 

  13. MacDonald NJ, Murad AC, Fogler WE, Lu Y, Sim BK . The tumor-suppressing activity of angiostatin protein resides within kringles 1 to 3. Biochem Biophys Res Commun. 1999;264:469–477.

    Article  CAS  PubMed  Google Scholar 

  14. Cao Y, Ji RW, Davidson D, et al. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J Biol Chem. 1996;271:29461–29467.

    Article  CAS  PubMed  Google Scholar 

  15. Claesson-Welsh L, Welsh M, Ito N, et al. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci USA. 1998;95:5579–5583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eriksson K, Magnusson P, Dixelius J, Claesson-Welsh L, Cross MJ . Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways. FEBS Lett. 2003;536:19–24.

    Article  CAS  PubMed  Google Scholar 

  17. Stack MS, Gately S, Bafetti LM, Enghild JJ, Soff GA . Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation. Biochem J. 1999;340:77–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barendsz-Janson AF, Griffioen AW, Muller AD, Dam-Mieras MC, Hillen HF . In vitro tumor angiogenesis assays: plasminogen lysine binding site 1 inhibits in vitro tumor-induced angiogenesis. J Vasc Res. 1998;35:109–114.

    Article  CAS  PubMed  Google Scholar 

  19. Griscelli F, Li H, Bennaceur-Griscelli A, et al. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci USA. 1998;95:6367–6372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Reilly MS, Holmgren L, Chen C, Folkman J . Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med. 1996;2:689–692.

    Article  CAS  PubMed  Google Scholar 

  21. Gately S, Twardowski P, Stack MS, et al. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA. 1997;94:10868–10872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sim BK, O'Reilly MS, Liang H, et al. A recombinant human angiostatin protein inhibits experimental primary and metastatic cancer. Cancer Res. 1997;57:1329–1334.

    CAS  PubMed  Google Scholar 

  23. Wu Z, O'Reilly MS, Folkman J, Shing Y . Suppression of tumor growth with recombinant murine angiostatin. Biochem Biophys Res Commun. 1997;236:651–654.

    Article  CAS  PubMed  Google Scholar 

  24. Cao Y, O'Reilly MS, Marshall B, Flynn E, Ji RW, Folkman J . Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J Clin Invest. 1998;101:1055–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kirsch M, Strasser J, Allende R, Bello L, Zhang J, Black PM . Angiostatin suppresses malignant glioma growth in vivo. Cancer Res. 1998;58:4654–4659.

    CAS  PubMed  Google Scholar 

  26. Griscelli F, Li H, Cheong C, et al. Combined effects of radiotherapy and angiostatin gene therapy in glioma tumor model. Proc Natl Acad Sci USA. 2000;97:6698–6703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sacco MG, Caniatti M, Cato EM, et al. Liposome-delivered angiostatin strongly inhibits tumor growth and metastatization in a transgenic model of spontaneous breast cancer. Cancer Res. 2000;60:2660–2665.

    CAS  PubMed  Google Scholar 

  28. Joki T, Machluf M, Atala A, et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat Biotechnol. 2001;19:35–39.

    Article  CAS  PubMed  Google Scholar 

  29. Read TA, Sorensen DR, Mahesparan R, et al. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol. 2001;19:29–34.

    Article  CAS  PubMed  Google Scholar 

  30. Cirone P, Bourgeois JM, Chang PL . Antiangiogenic cancer therapy with microencapsulated cells. Hum Gene Ther. 2003;14:1065–1077.

    Article  CAS  PubMed  Google Scholar 

  31. Heike Y, Takahashi M, Ohira T, et al. Genetic immunotherapy by intrapleural, intraperitoneal and subcutaneous injection of IL-2 gene-modified Lewis lung carcinoma cells. Int J Cancer. 1997;73:844–849.

    Article  CAS  PubMed  Google Scholar 

  32. Peirone MA, Ross CJD, Hortelano G, Brash JL, Chang PL . Encapsulation of various recombinant mammalian cell types in different alginate microcapsules. J Biomed Mater Res. 1998;42:587–596.

    Article  CAS  PubMed  Google Scholar 

  33. Van Raamsdonk JM, Chang PL . Osmotic pressure test: a simple, quantitative method to assess the mechanical stability of alginate microcapsules. J Biomed Mater Res. 2001;54:264–271.

    Article  CAS  PubMed  Google Scholar 

  34. Benelli R, Morini M, Carrozzino F, et al. Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J. 2002;16:267–269.

    Article  CAS  PubMed  Google Scholar 

  35. Tarui T, Miles LA, Takada Y . Specific interaction of angiostatin with integrin alpha(v)beta(3) in endothelial cells. J Biol Chem. 2001;276:39562–39568.

    Article  CAS  PubMed  Google Scholar 

  36. Griffioen AW, Damen CA, Blijham GH, Groenewegen G . Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood. 1996;88:667–673.

    CAS  PubMed  Google Scholar 

  37. Griffioen AW, Damen CA, Mayo KH, et al. Angiogenesis inhibitors overcome tumor induced endothelial cell anergy. Int J Cancer. 1999;80:315–319.

    Article  CAS  PubMed  Google Scholar 

  38. Cirone P, Bourgeois JM, Shen F, Chang PL . Combined immuno- and antiangiogenic therapy of cancer with microencapsulated cells. Hum Gene Ther. 2004;15:945–959.

    Article  CAS  PubMed  Google Scholar 

  39. Cirone P, Saller RM, Chang PL . Immuno-isolation in oncology — a mini review. Curr Pharm Biotechnol. 2001;2:269–277.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Canadian Breast Cancer Research Alliance and the Canadian Institute of Health Research for grant support and advice from Dr J Bourgeois in the pilot studies. Pasquale Cirone is the recipient of The David and Grace Prosser Scholarship, the McMaster University Graduate Scholarship and the Lee Nielson Roth Award for Medical Science (Cancer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia L Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirone, P., Shen, F. & Chang, P. A multiprong approach to cancer gene therapy by coencapsulated cells. Cancer Gene Ther 12, 369–380 (2005). https://doi.org/10.1038/sj.cgt.7700786

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700786

Keywords

This article is cited by

Search

Quick links