Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pre-Clinical Studies

Subclinical GvHD in non-irradiated F1 hybrids: severe lymphoid-tissue GvHD causing prolonged immune dysfunction

Abstract

GvHD is an important complication of allogeneic hematopoietic SCT. Parent-in-F1 models are frequently used to study GvHD immunobiology; the characteristics of parent-in-F1 GvHD vary between strain combinations and induction protocols. Here, we observed that a high-dose challenge of non-irradiated B6DBA2F1 and B6SJLF1 recipients with C57BL/6 splenocytes left the majority of recipients clinically healthy, while inducing progressive high-grade donor T-cell chimerism. We investigated this previously undescribed pattern of parent-in-F1 T-cell alloreactivity and studied the effect of serial parental splenocyte infusions on epithelial and lymphohematopoietic tissues. The majority of recipients of 4 weekly splenocyte infusions showed long-term survival with gradual establishment of high-grade donor chimerism and without any signs of epithelial-tissue GvHD. A minority of recipients showed BM failure type of GvHD and, respectively, graft rejection. Moreover, long-term F1 chimeras showed protracted pancytopenia, and in peripheral lymphoid tissues severe lymphopenia and near-complete eradication of APCs and dysfunction in antigen-presenting capacity in remaining APC. Hematopoiesis and lymphoid tissue composition recovered only after multilineage donor chimerism had established. In conclusion, we report on a novel type of parent-in-F1 hybrid GvHD, where a cumulative high dose of C57BL/6 parental splenocytes in non-irradiated F1 mice induces subclinical but severe hematolymphoid-tissue GvHD, causing prolonged immuno-incompetence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ferrara JL, Levine JE, Reddy P, Holler E . Graft-versus-host disease. Lancet 2009; 373: 1550–1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reddy P, Maeda Y, Liu C, Krijanovski OI, Korngold R, Ferrara JL . A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses. Nat Med 2005; 11: 1244–1249.

    Article  CAS  PubMed  Google Scholar 

  3. Chakraverty R, Cote D, Buchli J, Cotter P, Hsu R, Zhao G et al. An inflammatory checkpoint regulates recruitment of graft-versus-host reactive T cells to peripheral tissues. J Exp Med 2006; 203: 2021–2031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McSweeney PA, Niederwieser D, Shizuru JA, Sandmaier BM, Molina AJ, Maloney DG et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001; 97: 3390–3400.

    Article  CAS  PubMed  Google Scholar 

  5. Mackinnon S, Papadopoulos EB, Carabasi MH, Reich L, Collins NH, Boulad F et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 1995; 86: 1261–1268.

    CAS  PubMed  Google Scholar 

  6. de Lima M, Bonamino M, Vasconcelos Z, Colares M, Diamond H, Zalcberg I et al. Prophylactic donor lymphocyte infusions after moderately ablative chemotherapy and stem cell transplantation for hematological malignancies: high remission rate among poor prognosis patients at the expense of graft-versus-host disease. Bone Marrow Transplant 2001; 27: 73–78.

    Article  CAS  PubMed  Google Scholar 

  7. Badros A, Barlogie B, Morris C, Desikan R, Martin SR, Munshi N et al. High response rate in refractory and poor-risk multiple myeloma after allotransplantation using a nonmyeloablative conditioning regimen and donor lymphocyte infusions. Blood 2001; 97: 2574–2579.

    Article  CAS  PubMed  Google Scholar 

  8. Mapara MY, Kim YM, Wang SP, Bronson R, Sachs DH, Sykes M . Donor lymphocyte infusions mediate superior graft-versus-leukemia effects in mixed compared to fully allogeneic chimeras: a critical role for host antigen-presenting cells. Blood 2002; 100: 1903–1909.

    Article  CAS  PubMed  Google Scholar 

  9. Billiau AD, Fevery S, Rutgeerts O, Landuyt W, Waer M . Crucial role of timing of donor lymphocyte infusion in generating dissociated graft-versus-host and graft-versus-leukemia responses in mice receiving allogeneic bone marrow transplants. Blood 2002; 100: 1894–1902.

    Article  CAS  PubMed  Google Scholar 

  10. Dey BR, McAfee S, Colby C, Sackstein R, Saidman S, Tarbell N et al. Impact of prophylactic donor leukocyte infusions on mixed chimerism, graft-versus-host disease, and antitumor response in patients with advanced hematologic malignancies treated with nonmyeloablative conditioning and allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 2003; 9: 320–329.

    Article  PubMed  Google Scholar 

  11. Koh LP, Chao N . Haploidentical hematopoietic cell transplantation. Bone Marrow Transplant 2008; 42 (Suppl 1): S60–S63.

    Article  PubMed  Google Scholar 

  12. Rus V, Svetic A, Nguyen P, Gause WC, Via CS . Kinetics of Th1 and Th2 cytokine production during the early course of acute and chronic murine graft-versus-host disease. Regulatory role of donor CD8+ T cells. J Immunol 1995; 155: 2396–2406.

    CAS  PubMed  Google Scholar 

  13. Murphy WJ . Revisiting graft-versus-host disease models of autoimmunity: new insights in immune regulatory processes. J Clin Invest 2000; 106: 745–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tschetter JR, Mozes E, Shearer GM . Progression from acute to chronic disease in a murine parent-into-F1 model of graft-versus-host disease. J Immunol 2000; 165: 5987–5994.

    Article  CAS  PubMed  Google Scholar 

  15. Bloom ML, Wolk AG, Simon-Stoos KL, Bard JS, Chen J, Young NS . A mouse model of lymphocyte infusion-induced bone marrow failure. Exp Hematol 2004; 32: 1163–1172.

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Lipovsky K, Ellison FM, Calado RT, Young NS . Bystander destruction of hematopoietic progenitor and stem cells in a mouse model of infusion-induced bone marrow failure. Blood 2004; 104: 1671–1678.

    Article  CAS  PubMed  Google Scholar 

  17. Chen J, Brandt JS, Ellison FM, Calado RT, Young NS . Defective stromal cell function in a mouse model of infusion-induced bone marrow failure. Exp Hematol 2005; 33: 901–908.

    Article  CAS  PubMed  Google Scholar 

  18. Via CS, Sharrow SO, Shearer GM . Role of cytotoxic T lymphocytes in the prevention of lupus-like disease occurring in a murine model of graft-vs-host disease. J Immunol 1987; 139: 1840–1849.

    CAS  PubMed  Google Scholar 

  19. Billiau AD, Sefrioui H, Overbergh L, Rutgeerts O, Goebels J, Mathieu C et al. Transforming growth factor-beta inhibits lymphokine activated killer cytotoxicity of bone marrow cells: implications for the graft-versus-leukemia effect in irradiation allogeneic bone marrow chimeras. Transplantation 2001; 71: 292–299.

    Article  CAS  PubMed  Google Scholar 

  20. Fevery S, Billiau AD, Sprangers B, Rutgeerts O, Lenaerts C, Goebels J et al. CTLA-4 blockade in murine bone marrow chimeras induces a host-derived antileukemic effect without graft-versus-host disease. Leukemia 2007; 21: 1451–1459.

    Article  CAS  PubMed  Google Scholar 

  21. Billiau AD, Fevery S, Rutgeerts O, Landuyt W, Waer M . Transient expansion of Mac1+Ly6-G+Ly6-C+ early myeloid cells with suppressor activity in spleens of murine radiation marrow chimeras: possible implications for the graft-versus-host and graft-versus-leukemia reactivity of donor lymphocyte infusions. Blood 2003; 102: 740–748.

    Article  CAS  PubMed  Google Scholar 

  22. Van Wijmeersch B, Sprangers B, Rutgeerts O, Lenaerts C, Landuyt W, Waer M et al. Allogeneic bone marrow transplantation in models of experimental autoimmune encephalomyelitis: evidence for a graft-versus-autoimmunity effect. Biol Blood Marrow Transplant 2007; 13: 627–637.

    Article  CAS  PubMed  Google Scholar 

  23. Rolink AG, Pals ST, Gleichmann E . Allosuppressor and allohelper T cells in acute and chronic graft-vs-host disease. II. F1 recipients carrying mutations at H-2K and/or I-A. J Exp Med 1983; 157: 755–771.

    Article  CAS  PubMed  Google Scholar 

  24. Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999; 285: 412–415.

    Article  CAS  PubMed  Google Scholar 

  25. Merad M, Hoffmann P, Ranheim E, Slaymaker S, Manz MG, Lira SA et al. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Nat Med 2004; 10: 510–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vossen JM, Heidt PJ, van den BH, Gerritsen EJ, Hermans J, Dooren LJ . Prevention of infection and graft-versus-host disease by suppression of intestinal microflora in children treated with allogeneic bone marrow transplantation. Eur J Clin Microbiol Infect Dis 1990; 9: 14–23.

    Article  CAS  PubMed  Google Scholar 

  27. Beelen DW, Elmaagacli A, Muller KD, Hirche H, Schaefer UW . Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host disease after marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-prospective randomized trial. Blood 1999; 93: 3267–3275.

    CAS  PubMed  Google Scholar 

  28. Murai M, Yoneyama H, Ezaki T, Suematsu M, Terashima Y, Harada A et al. Peyer's patch is the essential site in initiating murine acute and lethal graft-versus-host reaction. Nat Immunol 2003; 4: 154–160.

    Article  CAS  PubMed  Google Scholar 

  29. Bronte V, Zanovello P . Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005; 5: 641–654.

    Article  CAS  PubMed  Google Scholar 

  30. Dolcetti L, Marigo I, Mantelli B, Peranzoni E, Zanovello P, Bronte V . Myeloid-derived suppressor cell role in tumor-related inflammation. Cancer Lett 2008; 267: 216–225.

    Article  CAS  PubMed  Google Scholar 

  31. Kusmartsev S, Nagaraj S, Gabrilovich DI . Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 2005; 175: 4583–4592.

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe S, Deguchi K, Zheng R, Tamai H, Wang LX, Cohen PA et al. Tumor-induced CD11b+Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. J Immunol 2008; 181: 3291–3300.

    Article  CAS  PubMed  Google Scholar 

  33. Paraiso KH, Ghansah T, Costello A, Engelman RW, Kerr WG . Induced SHIP deficiency expands myeloid regulatory cells and abrogates graft-versus-host disease. J Immunol 2007; 178: 2893–2900.

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Asavaroengchai W, Yeap BY, Wang MG, Wang S, Sykes M et al. Paradoxical effects of IFN-gamma in graft-versus-host disease reflect promotion of lymphohematopoietic graft-versus-host reactions and inhibition of epithelial tissue injury. Blood 2009; 113: 3612–3619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fowler DH, Breglio J, Nagel G, Eckhaus MA, Gress RE . Allospecific CD8+ Tc1 and Tc2 populations in graft-versus-leukemia effect and graft-versus-host disease. J Immunol 1996; 157: 4811–4821.

    CAS  PubMed  Google Scholar 

  36. Rozendaal L, Pals ST, Melief CJ, Gleichmann E . Protection from lethal graft-vs-host disease by donor stem cell repopulation. Eur J Immunol 1992; 22: 575–579.

    Article  CAS  PubMed  Google Scholar 

  37. Ball LM, Lankester AC, Bredius RG, Fibbe WE, van Tol MJ, Egeler RM . Graft dysfunction and delayed immune reconstitution following haploidentical peripheral blood hematopoietic stem cell transplantation. Bone Marrow Transplant 2005; 35 (Suppl 1): S35–S38.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the FWO Vlaanderen, the Stichting tegen Kanker and the WOMS (Scientific Research Multiple Sclerosis). BS and BVW are doctoral fellows and ADB is a postdoctoral fellow of the FWO Vlaanderen. AL and BV are doctoral fellows of IWT. BD is supported by the University Research Council of the University of Leuven, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A D Billiau.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprangers, B., Van Wijmeersch, B., Luyckx, A. et al. Subclinical GvHD in non-irradiated F1 hybrids: severe lymphoid-tissue GvHD causing prolonged immune dysfunction. Bone Marrow Transplant 46, 586–596 (2011). https://doi.org/10.1038/bmt.2010.162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2010.162

Keywords

This article is cited by

Search

Quick links