Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Health regulatory communications of well-established safety-related pharmacogenomics associations in six developed countries: an evaluation of alignment

Abstract

Recommendations on genetic testing are typically conveyed by drug regulatory authorities through drug labels, which are legal requirements for market authorization of drugs. We conducted a cross-sectional study of drug labels focusing on three crucial aspects of regulatory pharmacogenomics communications: (i) intent; (ii) interpretation in the local context; and (iii) implications of the genetic information. Labels of drugs associated with well-established safety-related genetic markers for adverse drug reactions across six developed countries of United States, Canada, United Kingdom, Australia, New Zealand and Singapore were reviewed. We found differing medical advice for genotype-positive HLA-B*15:02, HLA-A*31:01, UGT1A1*28 and CYP2D6 ultra-rapid metabolisers in breastfeeding women. This raises questions on implications to clinical practice between these countries. Varying ways of presenting at-risk population and allele frequencies also raises question in incorporating such information in drug labels. An international guidance addressing these crucial aspects of regulatory pharmacogenomic communications in drug labels is long overdue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Beitelshees AL, McLeod HL . Applying pharmacogenomics to enhance the use of biomarkers for drug effect and drug safety. Trends Pharmacol Sci 2006; 27: 498–502.

    Article  CAS  PubMed  Google Scholar 

  2. Issa AM . Pharmacogenomic profiling in postmarketing surveillance: prospects and challenges. Pharmacogenomics 2003; 4: 647–655.

    Article  PubMed  Google Scholar 

  3. Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W . Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 2001; 286: 2270–2279.

    Article  CAS  PubMed  Google Scholar 

  4. Dong D, Sung C, Finkelstein EA . Cost-effectiveness of HLA-B*15:02 genotyping in adult patients with newly diagnosed epilepsy in Singapore. Neurology 2012; 79: 1259–1267.

    Article  PubMed  Google Scholar 

  5. Kapoor R, Martinez-Vega R, Dong D, Tan SY, Leo YS, Lee CC et al. Reducing hypersensitivity reactions with HLA-B*57:01 genotyping before abacavir prescription: clinically useful but is it cost-effective in Singapore? Pharmacogenet Genomics 2015; 25: 60–72.

    Article  CAS  PubMed  Google Scholar 

  6. OECD (2013). Public Health in an Age of Genomics. In: OECD Science, Technology and Industry Policy Papers.

  7. Lazarou J, Pomeranz BH, Corey PN . Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998; 279: 1200–1205.

    CAS  PubMed  Google Scholar 

  8. Ernst FR, Grizzle AJ . Drug-related morbidity and mortality: updating the cost-of-illness model. J Am Pharm Assoc 2001; 41: 192–199.

    CAS  Google Scholar 

  9. Lam YW . Scientific challenges and implementation barriers to translation of pharmacogenomics in clinical practice. ISRN Pharmacol 2013; 2013: 641089.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zineh I, Pebanco GD, Aquilante CL, Gerhard T, Beitelshees AL, Beasley BN et al. Discordance between availability of pharmacogenetics studies and pharmacogenetics-based prescribing information for the top 200 drugs. Ann Pharmacother 2006; 40: 639–644.

    Article  CAS  PubMed  Google Scholar 

  11. Green JS, O'Brien TJ, Chiappinelli VA, Harralson AF . Pharmacogenomics instruction in US and Canadian medical schools: implications for personalized medicine. Pharmacogenomics 2010; 11: 1331–1340.

    Article  PubMed  Google Scholar 

  12. Frueh FW, Gurwitz D . From pharmacogenetics to personalized medicine: a vital need for educating health professionals and the community. Pharmacogenomics 2004; 5: 571–579.

    Article  PubMed  Google Scholar 

  13. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 2012; 92: 414–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caudle KE, Klein TE, Hoffman JM, Muller DJ, Whirl-Carrillo M, Gong L et al. Incorporation of pharmacogenomics into routine clinical practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Curr Drug Metab 2014; 15: 209–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Piening S, Haaijer-Ruskamp FM, de Vries JT, van der Elst ME, de Graeff PA, Straus SM et al. Impact of safety-related regulatory action on clinical practice: a systematic review. Drug Saf 2012; 35: 373–385.

    Article  PubMed  Google Scholar 

  16. Dusetzina SB, Higashi AS, Dorsey ER, Conti R, Huskamp HA, Zhu S et al. Impact of FDA drug risk communications on health care utilization and health behaviors: a systematic review. Med Care 2012; 50: 466–478.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ehmann F, Caneva L, Prasad K, Paulmichl M, Maliepaard M, Llerena A et al. Pharmacogenomic information in drug labels: European Medicines Agency perspective. Pharmacogenomics J 2015; 15: 201–210.

    Article  CAS  PubMed  Google Scholar 

  18. Otsubo Y, Asahina Y, Noguchi A, Sato Y, Ando Y, Uyama Y . Similarities and differences between US and Japan as to pharmacogenomic biomarker information in drug labels. Drug Metab Pharmacokinet 2012; 27: 142–149.

    Article  CAS  PubMed  Google Scholar 

  19. Shimazawa R, Ikeda M . Differences in pharmacogenomic biomarker information in package inserts from the United States, the United Kingdom and Japan. J Clin Pharm Ther 2013; 38: 468–475.

    Article  CAS  PubMed  Google Scholar 

  20. Surh LC, Pacanowski MA, Haga SB, Hobbs S, Lesko LJ, Gottlieb S et al. Learning from product labels and label changes: how to build pharmacogenomics into drug-development programs. Pharmacogenomics 2010; 11: 1637–1647.

    Article  CAS  PubMed  Google Scholar 

  21. http://esa.un.org/unpd/wpp/Excel-Data/country-classification.pdf. Last accessed 7 July 2014.

  22. http://www.who-umc.org/DynPage.aspx?id=98088&mn1=7347&mn2=7252&mn3=7253&mn4=7329 Last accessed 3 July 2014.

  23. Rogowski WH, Grosse SD, Khoury MJ . Challenges of translating genetic tests into clinical and public health practice. Nat Rev Genet 2009; 10: 489–495.

    Article  CAS  PubMed  Google Scholar 

  24. Wang B, Canestaro WJ, Choudhry NK . Clinical evidence supporting pharmacogenomic biomarker testing provided in US Food and Drug Administration drug labels. JAMA Intern Med 2014; 174: 1938–1944.

    Article  PubMed  Google Scholar 

  25. Payne PW . Ancestry-based pharmacogenomics, adverse reactions and carbamazepine: is the FDA warning correct? Pharmacogenomics J 2014; 14: 473–480.

    Article  CAS  PubMed  Google Scholar 

  26. Ramos E, Doumatey A, Elkahloun AG, Shriner D, Huang H, Chen G et al. Pharmacogenomics, ancestry and clinical decision making for global populations. Pharmacogenomics J 2014; 14: 217–222.

    Article  CAS  PubMed  Google Scholar 

  27. Rotimi CN, Jorde LB . Ancestry and disease in the age of genomic medicine. N Engl J Med 2010; 363: 1551–1558.

    Article  PubMed  Google Scholar 

  28. New Safety Information for the anti-epileptic drug TEGRETOL (carbamazepine)-For Health Professional. http://www.healthycanadians.gc.ca/recall-alert-rappel-avis/hc-sc/2008/14522a-eng.php. Last accessed 24 November 2015.

  29. Information for Healthcare Professionals: Dangerous or even fatal skin reactions-Carbamazepine (marketed as Carbatrol, Equetro, Tegretol, and generics). http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm124718.htm. Last accessed 24 November 2015.

  30. Carbamazepine, oxcarbazepine and eslicarbazepine: potential risk of serious skin reactions associated with the HLA-A*31:01 allele. https://www.gov.uk/drug-safety-update/carbamazepine-oxcarbazepine-and-eslicarbazepine-potential-risk-of-serious-skin-reactions. Last accessed 24 November 2015.

  31. HLA-B*15:02 genotype testing: Towards safer use of carbamazepine. http://www.hsa.gov.sg/content/hsa/en/Health_Products_Regulation/Safety_Information_and_Product_Recalls/Product_Safety_Alerts/2013/hla-b_1502_genotype.html. Last accessed 24 November 2015.

  32. Goodsaid FM, Amur S, Aubrecht J, Burczynski ME, Carl K, Catalano J et al. Voluntary exploratory data submissions to the US FDA and the EMA: experience and impact. Nat Rev Drug Discov 2010; 9: 435–445.

    Article  CAS  PubMed  Google Scholar 

  33. EMA releases guidance on the use of pharmacogenomics to improve safety monitoring of medicines. http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2014/01/news_detail_002013.jsp&mid=WC0b01ac058004d5c1. Last accessed 24 November 2015.

  34. European Medicines Agency. How to prepare and review a summary of product characteristics. http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000357.jsp&mid=WC0b01ac05806361e1. Last accessed 24 November 2015.

  35. Drugs@FDA. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/. Last accessed 24 November 2015.

  36. Health Canada Drug Product Database, Canada. http://www.hc-sc.gc.ca/dhp-mps/prodpharma/databasdon/index-eng.php. Last accessed 24 November 2015.

  37. Therapeutic Goods Administration eBusiness Services Product Information, Australia. https://www.ebs.tga.gov.au/. Last accessed 24 November 2015.

  38. New Zealand Medicines and Medical Devices Safety Authority Medicines Data Sheets, New Zealand. http://www.medsafe.govt.nz/profs/datasheet/dsform.asp. Last accessed 24 November 2015.

  39. Medicines and Healthcare Products and Regulatory Agency Medicines Information: SPC & PILs, UK. http://www.mhra.gov.uk/spc-pil/. Last accessed 24 November 2015.

  40. Health Sciences Authority Online Information Search (Infosearch – Medicinal Products), Singapore. http://eservice.hsa.gov.sg/prism/common/enquirepublic/SearchDRBProduct.do?action=load. Last accessed 24 November 2015.

  41. Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J et al. HLA-B*57:01 screening for hypersensitivity to abacavir. N Engl J Med 2008; 358: 568–579.

    Article  PubMed  Google Scholar 

  42. Chung WH, Hung SI, Chen YT . Genetic predisposition of life-threatening antiepileptic-induced skin reactions. Expert Opin Drug Safety 2010; 9: 15–21.

    Article  CAS  Google Scholar 

  43. Hung SI, Chung WH, Liu ZS, Chen CH, Hsih MS, Hui RC et al. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 2010; 11: 349–356.

    Article  CAS  PubMed  Google Scholar 

  44. Genin E, Chen DP, Hung SI, Sekula P, Schumacher M, Chang PY et al. HLA-A*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and meta-analysis. Pharmacogenomics J 2014; 14: 281–288.

    Article  CAS  PubMed  Google Scholar 

  45. Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP et al. HLA-B*58:01 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci USA 2005; 102: 4134–4139.

    Article  CAS  PubMed  Google Scholar 

  46. Somkrua R, Eickman EE, Saokaew S, Lohitnavy M, Chaiyakunapruk N . Association of HLA-B*58:01 allele and allopurinol-induced Stevens Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. BMC Med Genet 2011; 12: 118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 2000; 60: 6921–6926.

    CAS  PubMed  Google Scholar 

  48. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 2004; 22: 1382–1388.

    Article  CAS  PubMed  Google Scholar 

  49. Rouits E, Boisdron-Celle M, Dumont A, Guerin O, Morel A, Gamelin E . Relevance of different UGT1A1 polymorphisms in irinotecan-induced toxicity: a molecular and clinical study of 75 patients. Clin Cancer Res 2004; 10: 5151–5159.

    Article  CAS  PubMed  Google Scholar 

  50. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ . Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 2006; 368: 704.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

WCTK and YYT acknowledge support from the Saw Swee Hock School of Public Health, National University of Singapore. YYT additionally acknowledges support by the National Research Foundation, Prime Minister’s Office, Singapore under its Research Fellowship (NRF-RF-2010-05) and administered by the National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Y Teo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan-Koi, W., Lim, E. & Teo, Y. Health regulatory communications of well-established safety-related pharmacogenomics associations in six developed countries: an evaluation of alignment. Pharmacogenomics J 17, 121–127 (2017). https://doi.org/10.1038/tpj.2016.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2016.5

This article is cited by

Search

Quick links