Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Meta-analysis reveals significant association of 3′-UTR VNTR in SLC6A3 with smoking cessation in Caucasian populations

Abstract

Many studies have examined the association between SLC6A3 3′-untranslated region (UTR) variable number tandem repeat (VNTR) polymorphism and smoking cessation; however, the results are inconclusive, primarily because of the small-to-moderate size samples. The primary goal of this study was to determine whether this polymorphism has any effect on smoking cessation by a meta-analysis of all reported studies. We adopted a 9-repeat dominant model that considers 9-repeat and non-9-repeat as two genotypes and compared their frequencies in former vs current smokers. Eleven studies with 5480 participants were included. Considering the presence of study heterogeneity and differences in the availability of information from each study, three separate meta-analyses were performed with the Comprehensive Meta-Analysis statistical software (version 2.0). The first meta-analysis provided evidence of association between the 9-repeat genotype and smoking cessation under the fixed-effects model (pooled odds ratio (OR)=1.13; 95% confidence interval (CI)=1.01, 1.27; P=0.037) but not in the random-effects model (pooled OR=1.11; 95% CI=0.96, 1.29; P=0.159). Given the marginal evidence of heterogeneity among studies (P=0.10; I2=35.9%), which likely was caused by inclusion of an Asian population treatment study with an opposite effect of the polymorphism on smoking cessation, we excluded the data of this study, revealing a significant association between the 9-repeat genotype and smoking cessation under both the fixed- and random-effects models (pooled OR=1.15; 95% CI=1.02, 1.29; P=0.02 for both models). By analyzing adjusted and unadjusted results, we performed the third meta-analysis, which showed consistently that the 9-repeat genotype was significantly associated with smoking cessation under both the fixed- and random-effects models (pooled OR=1.17; 95% CI=1.04, 1.31; P=0.009 for both models). We conclude that the 3′-UTR VNTR polymorphism is significantly associated with smoking cessation, and smokers with one or more 9-repeat alleles have a 17% higher probability of smoking cessation than smokers carrying no such allele.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. WHO. WHO Tobacco Fact sheet N°339 http://www.who.int/mediacentre/factsheets/fs339/en/ World Health Organization 2014.

  2. Carmelli D, Swan GE, Robinette D, Fabsitz R . Genetic influence on smoking—a study of male twins. N Engl J Med 1992; 327: 829–833.

    Article  CAS  PubMed  Google Scholar 

  3. Heath AC, Martin NG . Genetic models for the natural history of smoking: evidence for a genetic influence on smoking persistence. Addict Behav 1993; 18: 19–34.

    Article  CAS  PubMed  Google Scholar 

  4. Heath AC, Cates R, Martin NG, Meyer J, Hewitt JK, Neale MC et al. Genetic contribution to risk of smoking initiation: comparisons across birth cohorts and across cultures. J Subst Abuse 1993; 5: 221–246.

    Article  CAS  PubMed  Google Scholar 

  5. True WR, Heath AC, Scherrer JF, Waterman B, Goldberg J, Lin N et al. Genetic and environmental contributions to smoking. Addiction 1997; 92: 1277–1287.

    Article  CAS  PubMed  Google Scholar 

  6. Li MD, Cheng R, Ma JZ, Swan GE . A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 2003; 98: 23–31.

    Article  PubMed  Google Scholar 

  7. Sullivan PF, Kendler KS . The genetic epidemiology of smoking. Nicotine Tob Res 1999; 1 (Suppl 2): S51–S57.

    Article  PubMed  Google Scholar 

  8. Xian H, Scherrer JF, Madden PA, Lyons MJ, Tsuang M, True WR et al. The heritability of failed smoking cessation and nicotine withdrawal in twins who smoked and attempted to quit. Nicotine Tob Res 2003; 5: 245–254.

    Article  CAS  PubMed  Google Scholar 

  9. Hardie TL, Moss HB, Lynch KG . Genetic correlations between smoking initiation and smoking behaviors in a twin sample. Addict Behav 2006; 31: 2030–2037.

    Article  PubMed  Google Scholar 

  10. David SP, Munafo MR . Genetic variation in the dopamine pathway and smoking cessation. Pharmacogenomics 2008; 9: 1307–1321.

    Article  CAS  PubMed  Google Scholar 

  11. Li MD . The genetics of nicotine dependence. Curr Psychiatry Rep 2006; 8: 158–164.

    Article  CAS  PubMed  Google Scholar 

  12. Ma Y, Yuan W, Jiang X, Cui WY, Li MD . Updated Findings of the Association and Functional Studies of DRD2/ANKK1 Variants with Addictions. Mol Neurobiol 2014; 51: 281–299.

    Article  PubMed  Google Scholar 

  13. Wang J, Li MD . Common and unique biological pathways associated with smoking initiation/progression, nicotine dependence, and smoking cessation. Neuropsychopharmacology 2010; 35: 702–719.

    Article  CAS  PubMed  Google Scholar 

  14. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 1992; 14: 1104–1106.

    Article  CAS  PubMed  Google Scholar 

  15. Dani JA, Heinemann S . Molecular and cellular aspects of nicotine abuse. Neuron 1996; 16: 905–908.

    Article  CAS  PubMed  Google Scholar 

  16. Caron MG . Images in neuroscience. Molecular biology, II. A dopamine transporter mouse knockout. Am J Psychiatry 1996; 153: 1515.

    Article  CAS  PubMed  Google Scholar 

  17. Uhl GR . Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion, and parkinsonism. Mov Disord 2003; 18 (Suppl 7): S71–S80.

    Article  PubMed  Google Scholar 

  18. Lerman C, Caporaso NE, Audrain J, Main D, Bowman ED, Lockshin B et al. Evidence suggesting the role of specific genetic factors in cigarette smoking. Health Psychol 1999; 18: 14–20.

    Article  CAS  PubMed  Google Scholar 

  19. Sabol SZ, Nelson ML, Fisher C, Gunzerath L, Brody CL, Hu S et al. A genetic association for cigarette smoking behavior. Health Psychol 1999; 18: 7–13.

    Article  CAS  PubMed  Google Scholar 

  20. Styn MA, Nukui T, Romkes M, Perkins K, Land SR, Weissfeld JL . The impact of genetic variation in DRD2 and SLC6A3 on smoking cessation in a cohort of participants 1 year after enrollment in a lung cancer screening study. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 254–261.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hiemstra M, Engels RC, Barker ED, van Schayck OC, Otten R . Smoking-specific parenting and smoking onset in adolescence: the role of genes from the dopaminergic system (DRD2, DRD4, DAT1 genotypes). PLoS ONE 2013; 8: e61673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jorm AF, Henderson AS, Jacomb PA, Christensen H, Korten AE, Rodgers B et al. Association of smoking and personality with a polymorphism of the dopamine transporter gene: results from a community survey. Am J Med Genet 2000; 96: 331–334.

    Article  CAS  PubMed  Google Scholar 

  23. Vandenbergh DJ, Bennett CJ, Grant MD, Strasser AA, O'Connor R, Stauffer RL et al. Smoking status and the human dopamine transporter variable number of tandem repeats (VNTR) polymorphism: failure to replicate and finding that never-smokers may be different. Nicotine Tob Res 2002; 4: 333–340.

    Article  PubMed  Google Scholar 

  24. Sieminska A, Buczkowski K, Jassem E, Niedoszytko M, Tkacz E . Influences of polymorphic variants of DRD2 and SLC6A3 genes, and their combinations on smoking in Polish population. BMC Med Genet 2009; 10: 92.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gordiev M, Engstrom PF, Khasanov R, Moroshek A, Sitdikov R, Dgavoronkov V et al. Genetic analysis of polymorphisms in dopamine receptor and transporter genes for association with smoking among cancer patients. Eur Addict Res 2013; 19: 105–111.

    Article  PubMed  Google Scholar 

  26. van Dyck CH, Malison RT, Jacobsen LK, Seibyl JP, Staley JK, Laruelle M et al. Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nuclear Med 2005; 46: 745–751.

    CAS  Google Scholar 

  27. Martinez D, Gelernter J, Abi-Dargham A, van Dyck CH, Kegeles L, Innis RB et al. The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans. Neuropsychopharmacology 2001; 24: 553–560.

    Article  CAS  PubMed  Google Scholar 

  28. Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG et al. Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology 2000; 22: 133–139.

    Article  CAS  PubMed  Google Scholar 

  29. Brookes KJ, Neale BM, Sugden K, Khan N, Asherson P, D'Souza UM . Relationship between VNTR polymorphisms of the human dopamine transporter gene and expression in post-mortem midbrain tissue. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 1070–1078.

    Article  CAS  PubMed  Google Scholar 

  30. Mill J, Asherson P, Browes C, D'Souza U, Craig I . Expression of the dopamine transporter gene is regulated by the 3' UTR VNTR: Evidence from brain and lymphocytes using quantitative RT-PCR. Am J Med Genet 2002; 114: 975–979.

    Article  PubMed  Google Scholar 

  31. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S . The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J 2001; 1: 152–156.

    Article  CAS  PubMed  Google Scholar 

  32. Swan GE, Jack LM, Valdes AM, Ring HZ, Ton CC, Curry SJ et al. Joint effect of dopaminergic genes on likelihood of smoking following treatment with bupropion SR. Health Psychol 2007; 26: 361–368.

    Article  PubMed  Google Scholar 

  33. O'Gara C, Stapleton J, Sutherland G, Guindalini C, Neale B, Breen G et al. Dopamine transporter polymorphisms are associated with short-term response to smoking cessation treatment. Pharmacogenet Genomics 2007; 17: 61–67.

    Article  CAS  PubMed  Google Scholar 

  34. Han DH, Joe KH, Na C, Lee YS . Effect of genetic polymorphisms on smoking cessation: a trial of bupropion in Korean male smokers. Psychiatric genetics 2008; 18: 11–16.

    Article  PubMed  Google Scholar 

  35. Munafo M, Clark T, Johnstone E, Murphy M, Walton R . The genetic basis for smoking behavior: a systematic review and meta-analysis. Nicotine Tob Res 2004; 6: 583–597.

    Article  CAS  PubMed  Google Scholar 

  36. Stapleton JA, Sutherland G, O'Gara C . Association between dopamine transporter genotypes and smoking cessation: a meta-analysis. Addict Biol 2007; 12: 221–226.

    Article  CAS  PubMed  Google Scholar 

  37. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62: 1006–1012.

    Article  PubMed  Google Scholar 

  38. David SP, Strong DR, Leventhal AM, Lancaster MA, McGeary JE, Munafo MR et al. Influence of a dopamine pathway additive genetic efficacy score on smoking cessation: results from two randomized clinical trials of bupropion. Addiction 2013; 108: 2202–2211.

    Article  PubMed  Google Scholar 

  39. Lerman C, Shields PG, Wileyto EP, Audrain J, Hawk LH Jr., Pinto A et al. Effects of dopamine transporter and receptor polymorphisms on smoking cessation in a bupropion clinical trial. Health Psychol 2003; 22: 541–548.

    Article  PubMed  Google Scholar 

  40. David SP, Brown RA, Papandonatos GD, Kahler CW, Lloyd-Richardson EE, Munafo MR et al. Pharmacogenetic clinical trial of sustained-release bupropion for smoking cessation. Nicotine Tob Res 2007; 9: 821–833.

    Article  CAS  PubMed  Google Scholar 

  41. Tashkin DP, Rabinoff M, Noble EP, Ritchie TL, Simmons MS, Connett J . Association of dopamine-related gene alleles, smoking behavior and decline in FEV1 in subjects with COPD: findings from the lung health study. Copd 2012; 9: 620–628.

    Article  PubMed  Google Scholar 

  42. Ton TG, Rossing MA, Bowen DJ, Srinouanprachan S, Wicklund K, Farin FM . Genetic polymorphisms in dopamine-related genes and smoking cessation in women: a prospective cohort study. Behav Brain Funct 2007; 3: 22.

    Article  PubMed  PubMed Central  Google Scholar 

  43. DerSimonian R, Laird N . Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–188.

    Article  CAS  PubMed  Google Scholar 

  44. Wang F, Simen A, Arias A, Lu QW, Zhang H . A large-scale meta-analysis of the association between the ANKK1/DRD2 Taq1A polymorphism and alcohol dependence. Hum Genet 2013; 132: 347–358.

    Article  CAS  PubMed  Google Scholar 

  45. Higgins JP, Thompson SG, Deeks JJ, Altman DG . Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–560.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Egger M, Davey Smith G, Schneider M, Minder C . Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hou QF, Li SB . Potential association of DRD2 and DAT1 genetic variation with heroin dependence. Neurosci Lett 2009; 464: 127–130.

    Article  CAS  PubMed  Google Scholar 

  48. Ueno S, Nakamura M, Mikami M, Kondoh K, Ishiguro H, Arinami T et al. Identification of a novel polymorphism of the human dopamine transporter (DAT1) gene and the significant association with alcoholism. Mol Psychiatry 1999; 4: 552–557.

    Article  CAS  PubMed  Google Scholar 

  49. Chen WJ, Chen CH, Huang J, Hsu YP, Seow SV, Chen CC et al. Genetic polymorphisms of the promoter region of dopamine D2 receptor and dopamine transporter genes and alcoholism among four aboriginal groups and Han Chinese in Taiwan. Psychiatr Genet 2001; 11: 187–195.

    Article  CAS  PubMed  Google Scholar 

  50. Samochowiec J, Kucharska-Mazur J, Grzywacz A, Jablonski M, Rommelspacher H, Samochowiec A et al. Family-based and case-control study of DRD2, DAT, 5HTT, COMT genes polymorphisms in alcohol dependence. Neurosci Lett 2006; 410: 1–5.

    Article  CAS  PubMed  Google Scholar 

  51. Cook EH Jr., Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE et al. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 1995; 56: 993–998.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cornish KM, Manly T, Savage R, Swanson J, Morisano D, Butler N et al. Association of the dopamine transporter (DAT1) 10/10-repeat genotype with ADHD symptoms and response inhibition in a general population sample. Mol psychiatry 2005; 10: 686–698.

    Article  CAS  PubMed  Google Scholar 

  53. Rommelse NN, Altink ME, Arias-Vasquez A, Buschgens CJ, Fliers E, Faraone SV et al. A review and analysis of the relationship between neuropsychological measures and DAT1 in ADHD. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1536–1546.

    Article  CAS  PubMed  Google Scholar 

  54. Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M . Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol Psychiatry 1997; 2: 311–313.

    Article  CAS  PubMed  Google Scholar 

  55. Greenwood TA, Kelsoe JR . Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics 2003; 82: 511–520.

    Article  CAS  PubMed  Google Scholar 

  56. Kelada SN, Costa-Mallen P, Checkoway H, Carlson CS, Weller TS, Swanson PD et al. Dopamine transporter (SLC6A3) 5' region haplotypes significantly affect transcriptional activity in vitro but are not associated with Parkinson's disease. Pharmacogenet Genomics 2005; 15: 659–668.

    Article  CAS  PubMed  Google Scholar 

  57. Bergen AW, Conti DV, Van Den Berg D, Lee W, Liu J, Li D et al. Dopamine genes and nicotine dependence in treatment-seeking and community smokers. Neuropsychopharmacology 2009; 34: 2252–2264.

    Article  CAS  PubMed  Google Scholar 

  58. Noble EP St, Jeor ST, Ritchie T, Syndulko K St, Jeor SC, Fitch RJ et al. D2 dopamine receptor gene and cigarette smoking: a reward gene? Med Hypotheses 1994; 42: 257–260.

    Article  CAS  PubMed  Google Scholar 

  59. Comings DE, Ferry L, Bradshaw-Robinson S, Burchette R, Chiu C, Muhleman D . The dopamine D2 receptor (DRD2) gene: a genetic risk factor in smoking. Pharmacogenetics 1996; 6: 73–79.

    Article  CAS  PubMed  Google Scholar 

  60. Li MD, Ma JZ, Beuten J . Progress in searching for susceptibility loci and genes for smoking-related behaviour. Clin Genet 2004; 66: 382–392.

    Article  CAS  PubMed  Google Scholar 

  61. Yoshida K, Hamajima N, Kozaki K, Saito H, Maeno K, Sugiura T et al. Association between the dopamine D2 receptor A2/A2 genotype and smoking behavior in the Japanese. Cancer Epidemiol Biomarkers Prev 2001; 10: 403–405.

    CAS  PubMed  Google Scholar 

  62. Hamajima N, Ito H, Matsuo K, Saito T, Tajima K, Ando M et al. Association between smoking habits and dopamine receptor D2 taqI A A2 allele in Japanese males: a confirmatory study. J Epidemiol 2002; 12: 297–304.

    Article  PubMed  Google Scholar 

  63. Munro CA, McCaul ME, Wong DF, Oswald LM, Zhou Y, Brasic J et al. Sex differences in striatal dopamine release in healthy adults. Biol Psychiatry 2006; 59: 966–974.

    Article  CAS  PubMed  Google Scholar 

  64. Dluzen DE, Anderson LI . Estrogen differentially modulates nicotine-evoked dopamine release from the striatum of male and female rats. Neurosci Lett 1997; 230: 140–142.

    Article  CAS  PubMed  Google Scholar 

  65. Carpenter MJ, Upadhyaya HP, LaRowe SD, Saladin ME, Brady KT . Menstrual cycle phase effects on nicotine withdrawal and cigarette craving: a review. Nicotine Tob Res 2006; 8: 627–638.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr David L Bronson for excellent editing of this manuscript. We also thank Dr Sean P David of Stanford University for providing the original genotyping data reported in his paper (David et al., 2007) to us. This study was supported in part by the Research Center for Air Pollution and Health of Zhejiang University, Ministry of Science and Technology of China (2012AA020405), the National Natural Science Foundation of China grant 81273223, the Young Scientists Fund of National Science Foundation of China (81301140) and the NIH grant DA012844.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Cui or M D Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Yuan, W., Cui, W. et al. Meta-analysis reveals significant association of 3′-UTR VNTR in SLC6A3 with smoking cessation in Caucasian populations. Pharmacogenomics J 16, 10–17 (2016). https://doi.org/10.1038/tpj.2015.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.44

This article is cited by

Search

Quick links