Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In interaction with gender a common CYP3A4 polymorphism may influence the survival rate of chemotherapy for childhood acute lymphoblastic leukemia

Abstract

CYP3A4 has an important role in the metabolisms of many drugs used in acute lymphoblastic leukemia (ALL) therapy; still, there are practically no publications about the role of CYP3A4 polymorphisms in ALL pharmacogenomics. We genotyped eight common single-nucleotide polymorphisms (SNPs) in the CYP3A4 and CYP3A5 genes in 511 children with ALL and investigated whether they influenced the survival of the patients. We involved additional 127 SNPs in 34 candidate genes and searched for interactions with respect to the survival rates. Significant association between the survival rates and the common rs2246709 SNP in the CYP3A4 gene was observed. The gender of the patients and the rs1076991 in the MTHFD1 gene strongly influenced this effect. We calculated new risk assessments involving the gender-rs2246709 interaction and showed that they significantly outperformed the earlier risk-group assessments at every time point. If this finding is confirmed in other populations, it can have a considerable prognostic significance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ansari M, Krajinovic M . Pharmacogenomics of acute leukemia. Pharmacogenomics 2007; 8: 817–834.

    Article  CAS  Google Scholar 

  2. Lautner-Csorba O, Gézsi A, Semsei AF, Antal P, Erdélyi DJ, Schermann G et al. Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance. BMC Med Genomics 2012; 5: 42.

    Article  CAS  Google Scholar 

  3. Ozdemir V, Kalow W, Tang BK, Paterson AD, Walker SE, Endrenyi L et al. Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 2000; 10: 373–388.

    Article  CAS  Google Scholar 

  4. Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem 2011; 57: 1574–1583.

    Article  CAS  Google Scholar 

  5. Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W . Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 2011; 11: 274–286.

    Article  Google Scholar 

  6. Antal P, Millinghoffer A, Hullám G, Hajós G, Szalai C, Falus A . A bioinformatic platform for a bayesian, multiphased, multilevel analysis in immunogenomics. In: Flower DDR, Davies M, Ranganathan S (eds). Bioinformatics for Immunomics. Springer: New York, NY, USA, 2010, pp 157–185.

    Google Scholar 

  7. Antal P, Millinghoffer A, Hullám G, Szalai C, Falus A . A bayesian view of challenges in feature selection: feature aggregation, multiple targets, redundancy and interaction. In: Saeys Y, Liu H, Inza I, Wehenkel L, de Peer Y Van (eds). FSDM. JMLR.org: Antwerp, Belgium, 2008, pp 74–89.

    Google Scholar 

  8. Hullám G, Antal P, Szalai C, Falus A . Evaluation of a Bayesian model-based approach in GA studies. In: Džeroski S, Geurts P, Rousu J (eds). JMLR: Workshop and Conference Proceedings. JMLR.org: Ljubljana, Slovenia, 2010, pp 30–43.

    Google Scholar 

  9. Ungvári I, Hullám G, Antal P, Kiszel PS, Gézsi A, Hadadi É et al. Evaluation of a partial genome screening of two asthma susceptibility regions using bayesian network based bayesian multilevel analysis of relevance. PLoS One 2012; 7: e33573.

    Article  Google Scholar 

  10. Lautner-Csorba O, Gézsi A, Erdélyi DJ, Hullám G, Antal P, Semsei ÁF et al. Roles of genetic polymorphisms in the folate pathway in childhood acute lymphoblastic leukemia evaluated by Bayesian relevance and effect size analysis. PLoS One 2013; 8: e69843.

    Article  CAS  Google Scholar 

  11. Antal P, Millinghoffer A, Hullám G, Hajós G, Sárközy P, Gézsi A et al. Bayesian, systems-based, multilevel analysis of associations for complex phenotypes: from interpretation to decisions. In: Sinoquet C, Mourad R (eds). Probabilistic Graphical Models for Genetics, Genomics and Postgenomics. Oxford University Press: Oxford, UK.

  12. Semsei AF, Erdélyi DJ, Ungvári I, Kámory E, Csókay B, Andrikovics H et al. Association of some rare haplotypes and genotype combinations in the MDR1 gene with childhood acute lymphoblastic leukaemia. Leuk Res 2008; 32: 1214–1220.

    Article  CAS  Google Scholar 

  13. Erdélyi DJ, Kámory E, Csókay B, Andrikovics H, Tordai A, Kiss C et al. Synergistic interaction of ABCB1 and ABCG2 polymorphisms predicts the prevalence of toxic encephalopathy during anticancer chemotherapy. Pharmacogenomics J 2008; 8: 321–327.

    Article  Google Scholar 

  14. R Core Team. R: A Language and Environment for Statistical Computing. 2014. http://www.r-project.org/.

  15. Therneau TM. A Package for Survival Analysis in S. 2014. http://cran.r-project.org/package=survival.

  16. Terry M, Therneau Patricia M . Grambsch. Modeling Survival Data: Extending the Cox Model. Springer: New York, NY, USA, 2000.

    Google Scholar 

  17. Dardis C. survMisc: Miscellaneous functions for survival data. 2013. http://cran.r-project.org/package=survMisc.

  18. Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA . Evaluating the yield of medical tests. JAMA 1982; 247: 2543–2546.

    Article  Google Scholar 

  19. Harrell FE, Lee KL, Mark DB . Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996; 15: 361–387.

    Article  Google Scholar 

  20. Mogensen UB, Ishwaran H, Gerds TA . Evaluating random forests for survival analysis using prediction error curves. J Stat Softw 2012; 50: 1–23.

    Article  Google Scholar 

  21. Benjamini Y, Hochberg Y . Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B 1995; 57, 289–300.

    Google Scholar 

  22. Elens L, van Gelder T, Hesselink DA, Haufroid V . van Schaik RHN. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 2013; 14: 47–62.

    Article  CAS  Google Scholar 

  23. dbSNP Home Page. http://www.ncbi.nlm.nih.gov/SNP/ (accessed 29 May 2014).

  24. The Pharmacogenomics Knowledge Base [PharmGKB]. https://www.pharmgkb.org/ (accessed 29 May 2014).

  25. Baumhäkel M, Kasel D, Rao-Schymanski RA, Böcker R, Beckurts KT, Zaigler M et al. Screening for inhibitory effects of antineoplastic agents on CYP3A4 in human liver microsomes. Int J Clin Pharmacol Ther 2001; 39: 517–528.

    Article  Google Scholar 

  26. Lindley C, Hamilton G, McCune JS, Faucette S, Shord SS, Hawke RL et al. The effect of cyclophosphamide with and without dexamethasone on cytochrome P450 3A4 and 2B6 in human hepatocytes. Drug Metab Dispos 2002; 30: 814–822.

    Article  CAS  Google Scholar 

  27. Yang L, Li Y, Hong H, Chang C, Guo L, Lyn-cook B et al. Sex Differences in the Expression of Drug-Metabolizing and Transporter Genes in Human Liver. J Drug Metab Toxicol 2012; 3: 1–9.

    Article  Google Scholar 

  28. Waxman DJ, Holloway MG . Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 2009; 76: 215–228.

    Article  CAS  Google Scholar 

  29. Thangavel C, Boopathi E, Shapiro BH . Intrinsic sexually dimorphic expression of the principal human CYP3A4 correlated with suboptimal activation of GH/glucocorticoid-dependent transcriptional pathways in men. Endocrinology 2011; 152: 4813–4824.

    Article  CAS  Google Scholar 

  30. Borssén M, Palmqvist L, Karrman K, Abrahamsson J, Behrendtz M, Heldrup J et al. Promoter DNA methylation pattern identifies prognostic subgroups in childhood T-cell acute lymphoblastic leukemia. PLoS One 2013; 8: e65373.

    Article  Google Scholar 

  31. Jaime-Pérez JC, Colunga-Pedraza PR, Gómez-Almaguer D . Is the number of blood products transfused associated with lower survival in children with acute lymphoblastic leukemia? Pediatr Blood Cancer 2011; 57: 217–223.

    Article  Google Scholar 

  32. Sharifi MJ, Bahoush G, Zaker F, Ansari S, Rafsanjani KA, Sharafi H . Association of -24CT, 1249GA, and 3972CT ABCC2 gene polymorphisms with methotrexate serum levels and toxic side effects in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol 2014; 31: 169–177.

    Article  CAS  Google Scholar 

  33. ALFRED. http://alfred.med.yale.edu/alfred/recordinfo.asp?UNID=SI317310P (accessed 29 May 2014).

  34. Reference SNP (refSNP) Cluster Report: rs2246709. http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2246709 (accessed 29 May 2014).

Download references

Acknowledgements

This study was supported by OTKA (Hungarian Scientific Research Fund): K81941 (C Szalai); the Economic Competitiveness Operational Program, Hungary GVOP 3.1.1-2004-05-0022/3.0 (DJ Erdélyi); OTKAPD (Hungarian Scientific Research Fund): 76348 (P Antal) and 109200 ÁF Semsei, János Bolyai Research Scholarship of the Hungarian Academy of Sciences (P Antal) and NKTH (National Research and Technology) TECH_08-A1/2-2008-0120: (C Szalai, P Antal). This work is connected to the scientific program of the ‘Development of quality-oriented and harmonized R+D+I strategy and functional model at BME’ project. This project is supported by the New Széchenyi Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

Web pages for the funding organizations:

OTKA: http://www.otka.hu/

NKTH: www.nih.gov.hu

Bolyai Research Scholarship: http://www.bolyaitestamentum.hu/?m=24

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Szalai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gézsi, A., Lautner-Csorba, O., Erdélyi, D. et al. In interaction with gender a common CYP3A4 polymorphism may influence the survival rate of chemotherapy for childhood acute lymphoblastic leukemia. Pharmacogenomics J 15, 241–247 (2015). https://doi.org/10.1038/tpj.2014.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.60

Search

Quick links