Abstract
We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and antisymmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments.
Introduction
Plasmonic nano resonators formed by various metallic nanostructures are at the core of plasmonics and metamaterial researches. Novel features arise when resonators are coupled to each other, including cases such as plasmonic dimers^{1,2,3}, plasmon induced transparency^{4,5,6,7,8,9,10,11}, directional optical antenna^{12,13,14} and high refractive index metamaterials^{15,16}. The interaction of localized plasmons in nanoparticle dimers has been explained in terms of a simple dipolar interaction^{17} or plasmon hybridization^{1,18}, the more general method. Though these approaches provide a reasonable description of coupled nanoparticles, they fail to accommodate the dynamical behaviour of coupled plasmonic resonators with accurate quantitative predictions, one of the most important open questions in plasmonics and metamaterial research. Recently, a single plasmonic resonator has been rigorously identified as a radiating dipole oscillator^{19,20}. A plasmonic resonator, for instance a halfwavelength rectangular hole in a metal film, can be identified as a bound charge oscillator, and, accordingly, the scattering of light by a resonator can be quantitatively described in terms of the scattering spectrum of a bound charge oscillator^{20,21}. This realisation raises the possibility of rigorously describing the interaction between plasmonic resonators in terms of bound charge oscillators.
In this Letter, we clarify the nature of dynamic coupling in plasmonic resonators by showing that plasmonic resonators couple to each other through the retarded interaction of bound charge oscillators. We determine the dynamic coupling of resonators explicitly from their retarded interaction and screened charges, allowing us to develop quantitative descriptions of the fundamental symmetric and antisymmetric modes of coupled resonators in good agreement with actual experiments and exact numerical results. Importantly, our dynamically coupled oscillator model predicts the presence of the plasmonic electromagnetically induced transparency (EIT) in any coupled resonators of unequal lengths. Our model provides an analytic and for the first time quantitative description of EIT in plasmonic resonators. We show that the EIT of coupled oscillators arises from the destructive interference of two fundamental modes with distinct phase properties and that, as we confirm experimentally, the same feature arises in coupled plasmonic resonators. Our dynamic coupling approach is not restricted to the rectangular holetype resonators considered in this paper. It can be readily applied to interacting plasmonic resonators in general and various building blocks of metamaterials.
Results
Oscillator picture of coupled resonators
We first recall that a single plasmonic resonator can be identified as a radiating bound charge dipole oscillator^{20}. Consider for example a narrow rectangular hole of size a × b in a thin metal film. When light is incident upon the rectangular hole with a polarization perpendicular to its long side, the total cross section of the free standing rectangular hole is given by the normalized energy flow through it,
where c is the speed of light, is the angular frequency of the incident wave and . T is the dispersive time parameter,
with the Euler’s constant . It was noted that a similar scattering property arises in a bound charge oscillator obeying the equation of motion,
where x(t) is the displacement from the equilibrium position of a particle of mass m and charge q. Terms in the right side of Eq. (3) represent the restoring force, the radiative reaction force and the external force, respectively. The radiative reaction force, also known as the AbrahamLorentz force, is responsible for the radiative energy loss characterized by the time constant . The total cross section of a bound charge oscillator is defined as the ratio of the timeaveraged radiated power to the incident intensity. Using the Larmor formula, , we find
Comparing Eqs. (1) and (4) reveals that the scattering cross section is identical, after allowing for the 50% reduction in intensity for the slot case which represents only forward scattering. If we choose , or equivalently introduce a dispersive oscillator mass,
Now, we consider two interacting plasmonic resonators, two rectangular holes of dimensions and separated by distance d as shown in Fig. 1a. Light is incident upon the holes with a polarization perpendicular to the long sides of the rectangles. The oscillator model of a plasmonic resonator suggests that an interaction between resonators can be treated as if it were an interaction between oscillating bound charges and we show that this is indeed the case. Since rectangular holes are complementary structures to rod type resonators, Babinet’s principle indicates that the corresponding charged oscillators can be restricted to movement along the xdirection with displacements and as shown in Fig. 1b. The equations of motion for coupled oscillators are
where and a phase difference is allowed between the externally applied forces. The term is the xcomponent of the Lorentz force F_{21} acting on q_{1} and likewise for with 1↔2,
We include the effect of charge screening on the interaction of plasmonic resonators using a screened charge with a screening factor S which will be determined later. E_{21} and B_{21} are the electric and magnetic fields due to charge q_{2} measured at the retarded time t–r/c,
where with unit vector and r_{1} and r_{2} are the position vectors of the charges q_{1} and q_{2} respectively. We assume that displacements x_{1}(t) and x_{2}(t) are much smaller than separation d so that . This, together with the harmonic time dependence of x_{2} with a factor , simplifies to yield
with the dynamic coupling coefficient
The timeaveraged power provided by the external field to charge is
with the equivalent expression for power P_{2} and charge q_{2} also holding. Then the total cross section of the coupled oscillator, defined as the ratio of the total power P_{1} + P_{2} to the incident intensity, becomes
Determination of dynamic coupling
For a better understanding of coupling and charge screening, we consider the case of two identical oscillators with and . Coupled identical oscillators admit two fundamental modes, symmetric and antisymmetric. The symmetric mode is driven by external fields without a phase difference () and is characterized by the steady state solution (see Supplementary Information for detailed derivation of Eq (13)–(17), , , , )
The corresponding total cross section becomes
Similarly, the antisymmetric mode is driven by external fields of phase difference and given by
so that the corresponding total cross section becomes
Here, are the real(imaginary) part of the coupling coefficient in Eq. (10) which without the factor S^{2} becomes singular as the separation r_{0} between the two charges becomes zero. In the case of coupled plasmonic resonators of identical dimensions a × b, as the separation between the two rectangular holes becomes zero, they merge into a single rectangular hole of size a × 2b. Since the scattering cross section in (4), evaluated near the resonance , is independent of the short side b, at the limit of zero separation we would expect the total scattering cross section of coupled identical resonators to reduce to that of a single resonator. It can be readily shown that this requirement is fulfilled with the choice of the screening factor S = S_{0} where
Finally, fixing the dynamic coupling coefficient in (10) with S = S_{0} as shown in Fig. 1c, we establish the oscillator model for dynamically coupled resonators.
To confirm the validity of our model, we compare the total cross sections of coupled oscillators with numericallycalculated and experimentallymeasured cross sections of corresponding coupled resonators. The results are shown in Fig. 2 in which the spectrum of the scattering cross section in symmetric mode given by (14) is plotted against resonator separation (the antisymmetric case is given in Supplementary Fig.S1). The scattering cross section is normalized by maximum value of the cross section from single resonator shown in Eq.(4). In Fig. 2b, the vertical breaks in the oscillator scattering cross section represent scattering spectra at the maximum scattering separation. The horizontal break shown in Fig. 2c at λ = λ_{0} = 2a (the black solid line) indicates that the cross section varies from 1 to 3 and converges to 2 in an oscillatory manner as the separation distance increases. This is in accordance with the expectation that the effect of coupling diminishes with larger separations. The positions of the spectral peaks in Fig. 2d show both blue and red shifts from the single resonator resonance, λ = λ_{0} = 2a, depending on the degree of separation of the coupled resonators. Remarkably, all these properties predicted by the oscillator model turn out to be in excellent agreement with not only the scattering behaviour of coupled resonators calculated using a rigorous FDTD numerical method but also the experimental data from microwave measurement.
Plasmonic EIT in asymmetric resonators
One of the most intensively studied properties of coupled resonators is the plasmonic analogue of electromagnetically induced transparency (EIT) which arises from the interference between bright (symmetric) and dark (antisymmetric) modes. Various coupled resonator systems such as the dipolequadrupole antenna pair^{10,11} have been employed to demonstrate EIT but without analytic quantitative predictions. Here, we show that a simple system of two parallel rectangular holes of unequal size indeed leads to EIT by opening a dip in the scattering cross section. Our oscillator model approach presents an analytic expression for the scattering cross section which also shows reasonable quantitative agreement with experimental results. Consider the two nonidentical rectangular holes specified in Fig. 1 where the aspect ratio is close to one. The steady state solution of the corresponding oscillator equation is given by (see Supplementary Information for derivation)
The total scattering cross section is readily obtained from Eq. (12). In order to see the EIT behaviour explicitly, we note that the coupling constant can be approximated to if the separation of the rectangular holes is small. Then, the total scattering cross section simplifies to
Note that possesses zero, , at
where we approximated as . This causes a dip in the broad resonance peak as shown in Fig. 3. Figure 3a shows the cross section spectrum in (19) while Fig. 3b,c show respectively the experimental and the FDTD numerical results for the scattering cross section of two rectangular holes corresponding to four different aspect ratios. Despite the simplicity, our oscillator model prediction manifesting EIT behaviour shows remarkable agreement with both the experimental and rigorous numerical results. Figure 3d compares the dip position predictions of the oscillator model with numerical and experimental results and once again the agreement is good since it is within 2 percent. Figure 4 describes the distinct spectral phase properties of EIT. We compared the phase differences between two oscillators with those between coupled resonators. To show phase difference between slots, we measure nearfield of each slot using hairpin antenna. The field component has been measured near the edge of slots. The fields resonantly excited inside each of the rectangular holes correspond to the first and the second peaks in Fig. 4b,d. Around the transmission dip, both holes are excited and a phase difference is expected to arise due to the resonant excitation of a dark mode as shown in Fig 4c,a confirms that this is indeed the case.
Discussion
In conclusion, we have successfully described the behaviour of interacting plasmonic resonators with a coupled oscillator model which has been derived analytically from the full diffraction theory. The dynamic coupling coefficient of the oscillator model has been determined by the retarded interaction between oscillating screened charges. The oscillator model allowed quantitative predictions about interacting resonators, particularly their EIT behaviour, which agreed with both numerical and experimental results. Our oscillator model approach is not restricted to rectangularholed plasmonic resonators but can be readily applied to other types of plasmonic resonator such as rodtype nano antennae. Features of the bound charge oscillator model such as radiative damping, retarded interaction, and screening effects are also shared by coupled plasmonic resonators. This suggests that the dynamic coupling approach presented in this paper provides a general analytic framework for coupled resonators.
Methods
Microwave measurements have been performed using the experimental setup in Fig. 5. Slots are perforated on a stainless steel, which exhibits a nearly ideal metal behavior at microfrequency of 2.6–3.9 GHz. A HewlettPackard 8719C network analyzer and a SGH260 standard gain horn antenna were used to generate the ypolarized electric field. To reduce the background noise, we surrounded the experimental setup using KSS12 pyramidal absorbers. To measure the far and near components of electric field, we used a rod antenna made of a LMR400 coaxial cable, and a hairpin antenna made of a RG405 coaxial cable. Since the forward scattering amplitude is proportional to the total cross section according to the optical theorem, we have measured the forward scattering amplitude from a double slot and normalized it by the maximum value of the forward scattering amplitude from a single slot. To measure the phase difference between slots, we measured the near field component, using the hairpin antenna, near the edge of a slot in order not to disturb the field distribution.
We made numerical calculations using the FDTD (finitedifference timedomain) method where metal is assumed to be a perfect conductor which is valid in the microwave region. The grid size of the FDTD calculation was .
Additional Information
How to cite this article: Lee, S. and Park, Q.H. Dynamic coupling of plasmonic resonators. Sci. Rep. 6, 21989; doi: 10.1038/srep21989 (2016).
References
 1.
Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon Hybridization in Nanoparticle Dimers. Nano Lett. 4, 899–903 (2004).
 2.
Aćimović, S. S., Kreuzer, M. P., González, M. U. & Quidant, R. Plasmon nearfield coupling in metal dimers as a step toward singlemolecule sensing. ACS Nano 3, 1231–1237 (2009).
 3.
Olk, P., Renger, J., Wenzel, M. T. & Eng, L. M. Distance dependent spectral tuning of two coupled metal nanoparticles. Nano Lett. 8, 1174–8 (2008).
 4.
Liu, N. et al. Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing. Nano Lett. 10, 1103–7 (2010).
 5.
Artar, A., Yanik, A. a. & Altug, H. Multispectral plasmon induced transparency in coupled metaatoms. Nano Lett. 11, 1685–9 (2011).
 6.
Papasimakis, N. et al. Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl. Phys. Lett. 94, 211902 (2009).
 7.
Duan, X. et al. Polarizationinsensitive and wideangle plasmonically induced transparency by planar metamaterials. Appl. Phys. Lett. 101, 143105 (2012).
 8.
Ye, Z. et al. Mapping the nearfield dynamics in plasmoninduced transparency. Phys. Rev. B 86, 155148 (2012).
 9.
Taubert, R., Hentschel, M., Kästel, J. & Giessen, H. Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett. 12, 1367–71 (2012).
 10.
Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758–62 (2009).
 11.
Zhang, S., Genov, D. a., Wang, Y., Liu, M. & Zhang, X. PlasmonInduced Transparency in Metamaterials. Phys. Rev. Lett. 101, 047401 (2008).
 12.
Simba, A. Y., Yamamoto, M., Nojima, T. & Itoh, K. Planartype sectored antenna based on slot Yagi–Uda array. IEE Proc.  Microwaves, Antennas Propag. 152, 347 (2005).
 13.
Kosako, T., Kadoya, Y. & Hofmann, H. Directional control of light by a nanooptical Yagi–Uda antenna. Nat. Photonics 4, 312–315 (2010).
 14.
Kim, J. et al. Babinetinverted optical YagiUda antenna for unidirectional radiation to free space. Nano Lett. 14, 3072–8 (2014).
 15.
Choi, M. et al. A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369–373 (2011).
 16.
Teguh Yudistira, H. et al. Fabrication of terahertz metamaterial with high refractive index using highresolution electrohydrodynamic jet printing. Appl. Phys. Lett. 103, 21106 (2013).
 17.
Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137–141 (2003).
 18.
Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–22 (2003).
 19.
Kats, M. a., Yu, N., Genevet, P., Gaburro, Z. & Capasso, F. Effect of radiation damping on the spectral response of plasmonic components. Opt. Express 19, 21748–53 (2011).
 20.
Choe, J., Kang, J., Kim, D. & Park, Q. Slot antenna as a bound charge oscillator. Opt. Express 20, 6521–6526 (2012).
 21.
Kang, J., Choe, J., Kim, D. & Park, Q. Substrate effect on aperture resonances in a thin metal film. Opt. Express 17, 15652–15658 (2009).
Acknowledgements
We thank KyoungHo Kim for his help. This work was supported by Nano Material Technology Development Program (No. 20110020205) through the National Research Foundation of Korea (NRF), and the Center for Advanced MetaMaterials (CAMM2014M3A6B3063710). Center for Advanced MetaMaterials was funded by the Ministry of Science, ICT and Future Planning as Global Frontier Project.
Author information
Affiliations
Department of Physics, Korea University, Seoul 136701, Korea
 Suyeon Lee
 & QHan Park
Authors
Search for Suyeon Lee in:
Search for QHan Park in:
Contributions
Q.H.P. wrote the main manuscript text and S.Y.L. prepared Figures 1–5. All authors reviewed the manuscript.
Competing interests
The authors declare no competing financial interests.
Corresponding author
Correspondence to QHan Park.
Supplementary information
Word documents
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Further reading

1.
MetaOptical Chirality and Emergent Eigenpolarization Modes via Plasmon Interactions
Scientific Reports (2017)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.