Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of hyperspectral imaging technology in the food industry

Abstract

Emerging issues related to food quality include the need to ensure food safety, detect adulteration and enable traceability throughout the food supply chain. Such issues must be addressed to ensure the quality, hygiene and nutritional value of food, and thereby safeguard the health and interests of consumers. Hyperspectral imaging, which combines spectroscopic data on the chemical constituents of a sample and high-resolution imaging of its physical features, is already being used in the food industry for quality inspection purposes. However, the complexity, high cost and large size of hyperspectral imaging equipment is a substantial obstacle to the widespread implementation of this technology. Moreover, the very large, information-rich datasets generated by hyperspectral imaging are difficult to interpret appropriately. This Review describes currently available types of hyperspectral imaging hardware as well as the wide range of image analysis and data modelling tools used to analyse hyperspectral data. Illustrative examples of hyperspectral imaging applications used for food quality inspection are described in detail, and future developments in hyperspectral imaging are presented. The overall aim of this Review is to provide guidance for non-specialist researchers in the selection of hyperspectral imaging equipment, software and models that are appropriate for their intended application.

Key points

  • Appropriate selection of hardware components of hyperspectral imaging systems is important because they determine the quality of the data obtained.

  • Image analysis and modelling tools can help researchers mine useful information from information-rich hyperspectral datasets.

  • Future development of hyperspectral imaging applications is likely to involve device miniaturization, improved analysis methods, data standardization and data-sharing initiatives.

  • Further expansion of hyperspectral imaging applications is expected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hyperspectral imaging systems used in food quality inspection.
Fig. 2: Principles of beamsplitter and cube imaging techniques.
Fig. 3: Information analysis of hyperspectral data.
Fig. 4: Applications of hyperspectral imaging technology in food quality inspection.
Fig. 5: An application of hyperspectral imaging technology in cereal quality inspection.

Similar content being viewed by others

Data availability

The authors are unable to or have chosen not to specify which data have been used.

References

  1. Hassoun, A. et al. Food quality 4.0: from traditional approaches to digitalized automated analysis. J. Food Eng. 337, 111216 (2023). This report discusses quality inspection techniques that are commonly used in the food industry and their fundamental principles.

    Article  Google Scholar 

  2. Zhao, Y. W. & Talha, M. Evaluation of food safety problems based on the fuzzy comprehensive analysis method. Food Sci. Technol. 42, e47321 (2022).

    Article  Google Scholar 

  3. Zhang, W. L. & Rhim, J. W. Recent progress in konjac glucomannan-based active food packaging films and property enhancement strategies. Food Hydrocoll. 128, 107572 (2022).

    Article  Google Scholar 

  4. Tao, Y., Bao, J. Q., Liu, Q., Liu, L. & Zhu, J. Q. Deep residual network enabled smart hyperspectral image analysis and its application to monitoring moisture, size distribution and contents of four bioactive compounds of granules in the fluid-bed granulation process of Guanxinning tablets. Spectrochim. Acta Part. A 287, 122083 (2023).

    Article  Google Scholar 

  5. Liang, J. et al. Non-destructive discrimination of homochromatic foreign materials in cut tobacco based on VIS-NIR hyperspectral imaging. J. Sci. Food Agric. 103, 4545–4552 (2023).

    Article  Google Scholar 

  6. Tian, X. Y. et al. An evaluation of biochemical, structural and volatile changes of dry-cured pork using a combined ion mobility spectrometry, hyperspectral and confocal imaging approach. J. Sci. Food Agric. 101, 5972–5983 (2021).

    Article  Google Scholar 

  7. Ooi, M. P. L. et al. Robust statistical analysis to predict and estimate the concentration of the cannabidiolic acid in Cannabis sativa L.: a comparative study. Ind. Crop. Prod. 189, 115744 (2022).

    Article  Google Scholar 

  8. Sawyer, E. et al. Phenotyping grapevine red blotch virus and grapevine leafroll-associated viruses before and after symptom expression through machine-learning analysis of hyperspectral images. Front. Plant. Sci. 14, 1117869 (2023).

    Article  Google Scholar 

  9. Zhang, J. et al. Identification of transgenic agricultural products and foods using NIR spectroscopy and hyperspectral imaging: a review. Processes 11, 651 (2023). This work reviews the applications of hyperspectral imaging in the detection of genetically modified agricultural products and foods.

    Article  Google Scholar 

  10. Fu, X. P. & Chen, J. C. A review of hyperspectral imaging for chicken meat safety and quality evaluation: application, hardware, and software. Compr. Rev. Food Sci. Food Saf. 18, 535–547 (2019).

    Article  Google Scholar 

  11. Ye, W. X. et al. Application of near-infrared spectroscopy and hyperspectral imaging combined with machine learning algorithms for quality inspection of grape: a review. Foods 12, 132 (2023).

    Article  Google Scholar 

  12. Chen, S. Y., Hsu, S. H., Ko, C. Y. & Hsu, K. H. Real-time defect and freshness inspection on chicken eggs using hyperspectral imaging. Food Control. 150, 109716 (2023).

    Article  Google Scholar 

  13. Liu, J. Z. et al. Application and prospect of metabolomics-related technologies in food inspection. Food Res. Int. 171, 113071 (2023).

    Article  Google Scholar 

  14. Jia, J. X. et al. Status and application of advanced airborne hyperspectral imaging technology: a review. Infrared Phys. Technol. 104, 103115 (2020).

    Article  Google Scholar 

  15. Cai, W. W. et al. A novel hyperspectral image classification model using bole convolution with three-direction attention mechanism: small sample and unbalanced learning. IEEE Trans. Geosci. Electron. 61, 5500917 (2023).

    Google Scholar 

  16. Liu, C. et al. Ground-based hyperspectral stereoscopic remote sensing network: a promising strategy to learn coordinated control of O3 and PM2.5 over China. Engineering 19, 71–83 (2022).

    Article  Google Scholar 

  17. Saha, D. & Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: a review. Curr. Res. Food Sci. 4, 28–44 (2021). This review outlines the applications of different machine learning techniques to hyperspectral image analysis.

    Article  Google Scholar 

  18. Windrim, L., Ramakrishnan, R., Melkumyan, A. & Murphy, R. J. A physics-based deep learning approach to shadow invariant representations of hyperspectral images. IEEE Trans. Image Process. 27, 665–677 (2018).

    Article  MathSciNet  Google Scholar 

  19. Pu, H. B., Wei, Q. Y. & Sun, D.-W. Recent advances in muscle food safety evaluation: hyperspectral imaging analyses and applications. Crit. Rev. Food Sci. Nutr. 63, 1297–1313 (2023). This review discusses the configuration of hyperspectral imaging systems and safety indicators for meat foods.

    Article  Google Scholar 

  20. Moharram, M. A. & Sundaram, D. M. Land use and land cover classification with hyperspectral data: a comprehensive review of methods, challenges and future directions. Neurocomputing 536, 90–113 (2023).

    Article  Google Scholar 

  21. Xing, F. G. et al. Recent developments and applications of hyperspectral imaging for rapid detection of mycotoxins and mycotoxigenic fungi in food products. Crit. Rev. Food Sci. Nutr. 59, 173–180 (2019).

    Article  Google Scholar 

  22. Xie, Q., Zhou, M. H., Zhao, Q., Xu, Z. B. & Meng, D. Y. MHF-Net: an interpretable deep network for multispectral and hyperspectral image fusion. IEEE Trans. Pattern Anal. Mach. Intell. 44, 1457–1473 (2022).

    Article  Google Scholar 

  23. Tao, C., Qi, J., Lu, W. P., Wang, H. & Li, H. F. Remote sensing image scene classification with self-supervised paradigm under limited labeled samples. IEEE Geosci. Remote. Sens. Lett. 19, 8004005 (2022).

    Article  Google Scholar 

  24. Dhiman, P. et al. Image acquisition, preprocessing and classification of citrus fruit diseases: a systematic literature review. Sustainability 15, 9643 (2023).

    Article  Google Scholar 

  25. Wieme, J. et al. Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: a review. Biosyst. Eng. 222, 156–176 (2022).

    Article  Google Scholar 

  26. Huang, S. G., Zhang, H. Y., Zeng, H. J. & Pizurica, A. From model-based optimization algorithms to deep learning models for clustering hyperspectral images. Remote. Sens. 15, 2832 (2023).

    Article  Google Scholar 

  27. Cui, R. et al. Deep learning in medical hyperspectral images: a review. Sensors 22, 9790 (2022).

    Article  Google Scholar 

  28. Zaman, Z., Ahmed, S. B. & Malik, M. I. Analysis of hyperspectral data to develop an approach for document images. Sensors 23, 6845 (2023).

    Article  Google Scholar 

  29. Shi, Y. et al. Improving performance: a collaborative strategy for the multi-data fusion of electronic nose and hyperspectral to track the quality difference of rice. Sens. Actuators B 333, 129546 (2021).

    Article  Google Scholar 

  30. Zhang, Q. L., Kang, S. Y., Yin, C. B., Li, Z. Y. & Shi, Y. An adaptive learning method for the fusion information of electronic nose and hyperspectral system to identify the egg quality. Sens. Actuators A Phys. 346, 113824 (2022).

    Article  Google Scholar 

  31. Hong, Z. H., Sun, Y. Y., Ye, P., Loy, D. A. & Liang, R. G. Bio-inspired compact, high-resolution snapshot hyperspectral imaging system with 3D printed glass lightguide array. Adv. Opt. Mater. 11, 2300156 (2023).

    Article  Google Scholar 

  32. Pu, H. B., Lin, L. & Sun, D.-W. Principles of hyperspectral microscope imaging techniques and their applications in food quality and safety detection: a review. Compr. Rev. Food Sci. Food Saf. 18, 853–866 (2019). This review presents the principles of various hyperspectral microimaging techniques and their applications in food.

    Article  Google Scholar 

  33. Sun, H. B. et al. Preliminary verification of hyperspectral LiDAR covering VIS-NIR-SWIR used for objects classification. Eur. J. Remote. Sens. 55, 291–303 (2022).

    Article  Google Scholar 

  34. Vanhellemont, Q. & Ruddick, K. Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters. Remote. Sens. Environ. 256, 112284 (2021).

    Article  Google Scholar 

  35. Feng, L., Wu, B. H., Zhu, S. S., He, Y. & Zhang, C. Application of visible/infrared spectroscopy and hyperspectral imaging with machine learning techniques for identifying food varieties and geographical origins. Front. Nutr. 8, 680357 (2021).

    Article  Google Scholar 

  36. Xie, C. Q. & Zhou, W. D. A review of recent advances for the detection of biological, chemical, and physical hazards in foodstuffs using spectral imaging techniques. Foods 12, 2266 (2023).

    Article  Google Scholar 

  37. Proshkin, Y. A. et al. Assessment of ultraviolet impact on main pigment content in purple basil (Ocimum Basilicum L.) by the spectrometric method and hyperspectral images analysis. Appl. Sci. Basel 11, 8804 (2021).

    Article  Google Scholar 

  38. Nurkhoeriyati, T., Arefi, A., Kulig, B., Sturm, B. & Hensel, O. Non-destructive monitoring of quality attributes kinetics during the drying process: a case study of celeriac slices and the model generalisation in selected commodities. Food Chem. 424, 136379 (2023).

    Article  Google Scholar 

  39. Jia, W. Y., van Ruth, S., Scollan, N. & Koidis, A. Hyperspectral Imaging (HSI) for meat quality evaluation across the supply chain: current and future trends. Curr. Res. Food Sci. 5, 1017–1027 (2022).

    Article  Google Scholar 

  40. Li, L. T. et al. On-orbit relative radiometric calibration of the Bayer pattern push-broom sensor for Zhuhai-1 video satellites. Remote. Sens. 15, 377 (2023).

    Article  Google Scholar 

  41. Yako, M. et al. Video-rate hyperspectral camera based on a CMOS-compatible random array of Fabry–Perot filters. Nat. Photonics 17, 218–223 (2023).

    Article  Google Scholar 

  42. Bai, C. X. et al. Dual-shearing interferometer for multi-modal hyperspectral imaging. Opt. Lett. 48, 2214–2217 (2023).

    Article  Google Scholar 

  43. Inamdar, D., Kalacska, M., Leblanc, G. & Arroyo-Mora, J. P. Implementation of the directly-georeferenced hyperspectral point cloud. MethodsX 8, 101429 (2021).

    Article  Google Scholar 

  44. Mao, H. F., Dong, X. S. & Liu, Y. H. A subwavelength-grating-mirror-based MEMS tunable Fabry–Perot filter for hyperspectral infrared imaging. J. Microelectromech. Syst. 32, 57–66 (2023).

    Article  Google Scholar 

  45. Doh, I. J. et al. Bacterial colony phenotyping with hyperspectral elastic light scattering patterns. Sensors 23, 3485 (2023).

    Article  Google Scholar 

  46. Fan, A. et al. Deep learning reconstruction enables full-Stokes single compression in polarized hyperspectral imaging. Chin. Opt. Lett. 21, 051101 (2023).

    Article  Google Scholar 

  47. Fu, Y., Zhang, T., Zheng, Y. Q., Zhang, D. B. & Huang, H. Joint camera spectral response selection and hyperspectral image recovery. IEEE Trans. Pattern Anal. Mach. Intell. 44, 256–272 (2022).

    Article  Google Scholar 

  48. Song, J. Y., Bian, L. F., Sun, X. M., Ding, Z. & Yang, C. Design of active hyperspectral light source based on compact light pipe with LED deflection layout. Opt. Laser Technol. 145, 107536 (2022).

    Article  Google Scholar 

  49. Ozdogan, G., Lin, X. H. & Sun, D.-W. Rapid and noninvasive sensory analyses of food products by hyperspectral imaging: recent application developments. Trends Food Sci. Technol. 111, 151–165 (2021). This work presents a comprehensive review of the latest developments in the applications of hyperspectral imaging for the identification of organoleptic properties (including colour, defects, texture, flavour, freshness and ripeness) of a wide range of food products.

    Article  Google Scholar 

  50. Pham, Q. T. & Liou, N. S. Hyperspectral imaging system with rotation platform for investigation of jujube skin defects. Appl. Sci. Basel 10, 2851 (2020).

    Article  Google Scholar 

  51. Willard, C. et al. Correction of dropped frames in high-resolution push-broom hyperspectral images for cultural heritage. ACM J. Comput. Cult. Herit. 15, 29 (2022).

    Google Scholar 

  52. Pessoa, A. R. et al. 2D thermal maps using hyperspectral scanning of single upconverting microcrystals: experimental artifacts and image processing. ACS Appl. Mater. Interfaces 14, 38311–38319 (2022).

    Article  Google Scholar 

  53. Soni, A., Dixit, Y., Reis, M. M. & Brightwell, G. Hyperspectral imaging and machine learning in food microbiology: developments and challenges in detection of bacterial, fungal, and viral contaminants. Compr. Rev. Food Sci. Food Saf. 21, 3717–3745 (2022). This work presents a comprehensive review of the applications of hyperspectral imaging for the detection of bacterial, viral and fungal contaminants in food.

    Article  Google Scholar 

  54. Thangavel, K. et al. Autonomous satellite wildfire detection using hyperspectral imagery and neural networks: a case study on Australian wildfire. Remote. Sens. 15, 720 (2023).

    Article  Google Scholar 

  55. Pu, H. B. et al. Distinguishing fresh and frozen–thawed beef using hyperspectral imaging technology combined with convolutional neural networks. Microchem. J. 189, 108559 (2023). This study provides a clear and concise introduction to the fundamental process of analysing hyperspectral data.

    Article  Google Scholar 

  56. Xue, J., Zhao, Y. Q., Liao, W. Z. & Chan, J. C.-W. Nonlocal low-rank regularized tensor decomposition for hyperspectral image denoising. IEEE Trans. Geosci. Electron. 57, 5174–5189 (2019).

    Google Scholar 

  57. Liu, B., Yu, A. Z., Tan, X. & Wang, R. R. Slow feature extraction for hyperspectral image classification. Remote. Sens. Lett. 12, 429–438 (2021).

    Article  Google Scholar 

  58. He, X., Chen, Y. S. & Ghamisi, P. Dual graph convolutional network for hyperspectral image classification with limited training samples. IEEE Trans. Geosci. Electron. 60, 5502418 (2022).

    Google Scholar 

  59. Zhang, X. et al. A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images. Remote. Sens. 11, 1554 (2019).

    Article  Google Scholar 

  60. Yang, L. et al. Nondestructive measurement of pectin polysaccharides using hyperspectral imaging in mulberry fruit. Food Chem. 334, 127614 (2021).

    Article  Google Scholar 

  61. Yang, X. F. et al. Synergistic 2D/3D convolutional neural network for hyperspectral image classification. Remote. Sens. 12, 2033 (2020).

    Article  Google Scholar 

  62. Pu, H. B., Yu, J. X., Liu, Z. P., Paliwal, J. & Sun, D.-W. Evaluation of the effects of vacuum cooling on moisture contents, colour and texture of mushroom (Agaricus bisporus) using hyperspectral imaging method. Microchem. J. 190, 108653 (2023).

    Article  Google Scholar 

  63. Yang, X. W., Jiang, P., Luo, Y. H. & Shi, Y. X. Non-destructive detection of fatty acid content of camellia seed based on hyperspectral. J. Oleo Sci. 72, 69–77 (2023).

    Article  Google Scholar 

  64. Wang, B., Yang, H., Zhang, S. J. & Li, L. L. Detection of defective features in Cerasus humilis fruit based on hyperspectral imaging technology. Appl. Sci. Basel 13, 3279 (2023).

    Article  Google Scholar 

  65. Wang, Y. Y., He, H. J., Jiang, S. Q. & Ma, H. J. Nondestructive determination of IMP content in chilled chicken based on hyperspectral data combined with chemometrics. Int. J. Agric. Biol. Eng. 15, 277–284 (2022).

    Google Scholar 

  66. Yang, H., Wang, C., Zhang, H., Zhou, Y. N. & Luo, B. Recognition of maize seed varieties based on hyperspectral imaging technology and integrated learning algorithms. Peerj Comput. Sci. 9, e1354 (2023).

    Article  Google Scholar 

  67. Zhou, X. et al. A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging. Food Chem. 409, 135251 (2023).

    Article  Google Scholar 

  68. Haghbin, N., Bakhshipour, A., Zareiforoush, H. & Mousanejad, S. Non-destructive pre-symptomatic detection of gray mold infection in kiwifruit using hyperspectral data and chemometrics. Plant. Methods 19, 53 (2023).

    Article  Google Scholar 

  69. Kiani, S., Yazdanpanah, H. & Feizy, J. Geographical origin differentiation and quality determination of saffron using a portable hyperspectral imaging system. Infrared Phys. Technol. 131, 104634 (2023).

    Article  Google Scholar 

  70. Long, T. et al. Visible–near-infrared hyperspectral imaging combined with ensemble learning for the nutrient content of Pinus elliottii × P. caribaea canopy needles detection. Front. For. Glob. Change 6, 1203626 (2023).

    Article  Google Scholar 

  71. Li, Z., Zhang, Y. & Zhang, J. P. Tensor approximation with low-rank representation and kurtosis correlation constraint for hyperspectral anomaly detection. IEEE Trans. Geosci. Electron. 60, 5533713 (2022).

    Google Scholar 

  72. Hou, S. K., Shi, H. Y., Cao, X. H., Zhang, X. H. & Jiao, L. C. Hyperspectral imagery classification based on contrastive learning. IEEE Trans. Geosci. Electron. 60, 5521213 (2022).

    Google Scholar 

  73. Chen, X. X. et al. Using hyperspectral imaging technology for assessing internal quality parameters of persimmon fruits during the drying process. Food Chem. 386, 132774 (2022).

    Article  Google Scholar 

  74. Yu, H.-D. et al. Hyperspectral imaging in combination with data fusion for rapid evaluation of tilapia fillet freshness. Food Chem. 348, 129129 (2021). This study indicates that hyperspectral imaging techniques with data fusion analysis show great potential for non-destructive food quality evaluation.

    Article  Google Scholar 

  75. Zhang, J. J. et al. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods. Plant. Methods 17, 49 (2021).

    Article  Google Scholar 

  76. Que, H. T., Zhao, X., Sun, X. L., Zhu, Q. B. & Huang, M. Identification of wheat kernel varieties based on hyperspectral imaging technology and grouped convolutional neural network with feature intervals. Infrared Phys. Technol. 131, 104653 (2023).

    Article  Google Scholar 

  77. Pu, H. B., Yu, J. X., Sun, D.-W., Wei, Q. Y. & Li, Q. Distinguishing pericarpium citri reticulatae of different origins using terahertz time-domain spectroscopy combined with convolutional neural networks. Spectrochim. Acta Part. A 299, 122771 (2023).

    Article  Google Scholar 

  78. Yu, H. L., Jiang, D. P., Peng, X. W. & Zhang, Y. Z. A vegetation classification method based on improved dual-way branch feature fusion U-net. Front. Plant. Sci. 13, 1047091 (2022).

    Article  Google Scholar 

  79. Bai, Z. Z. et al. Rapid and nondestructive detection of sorghum adulteration using optimization algorithms and hyperspectral imaging. Food Chem. 331, 127290 (2020).

    Article  Google Scholar 

  80. Wang, J. & Chang, C. I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Electron. 44, 1586–1600 (2006).

    Google Scholar 

  81. Ma, S., Liu, C., Li, H., Zhang, G. & He, Z. Feature extraction based on linear embedding and tensor manifold for hyperspectral image. Acta Optica Sin. 39, 0412001 (2019).

    Article  Google Scholar 

  82. Xu, L. J. et al. Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology. Environ. Res. 232, 116389 (2023).

    Article  Google Scholar 

  83. Pu, H. B., Yu, J. X., Sun, D.-W., Wei, Q. Y. & Wang, Z. Feature construction methods for processing and analysing spectral images and their applications in food quality inspection. Trends Food Sci. Technol. 138, 726–737 (2023). This work is a comprehensive review of data compression methods used in hyperspectral imaging.

    Article  Google Scholar 

  84. Su, H. J., Zhang, H. H., Wu, Z. Y. & Du, Q. Relaxed collaborative representation with low-rank and sparse matrix decomposition for hyperspectral anomaly detection. IEEE J. Sel.Top. Appl. Earth Obs. Remote. Sens. 15, 6826–6842 (2022).

    Article  Google Scholar 

  85. Wang, Y. C. & Ji, Z. Y. Design and implementation of trace inspection system based upon hyperspectral imaging technology. Comput. Intell. Neurosci. 2022, 9524190 (2022).

    Google Scholar 

  86. Xue, X. M. et al. Identification of eight Pterocarpus species and two Dalbergia species using visible/near-infrared (Vis/NIR) hyperspectral imaging (HSI). Forests 14, 1259 (2023).

    Article  Google Scholar 

  87. Huang, H. P. et al. Rapid and nondestructive prediction of amylose and amylopectin contents in sorghum based on hyperspectral imaging. Food Chem. 359, 129954 (2021).

    Article  Google Scholar 

  88. Ren, G., Wang, Y., Ning, J. & Zhang, Z. Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality. Spectrochim. Acta Part A 237, 118407 (2020).

    Article  Google Scholar 

  89. Ye, W. et al. Detection of pesticide residue level in grape using hyperspectral imaging with machine learning. Foods 11, 1609 (2022).

    Article  Google Scholar 

  90. Long, Y., Wang, Q. Y., Tian, X., Bin, Z. & Huang, W. Q. Screening naturally mildewed maize kernels based on Raman hyperspectral imaging coupled with machine learning classifiers. J. Food Process. Eng. 45, e14148 (2022).

    Article  Google Scholar 

  91. Zhang, J. J. et al. Rapid evaluation of texture parameters of Tan mutton using hyperspectral imaging with optimization algorithms. Food Control. 135, 108815 (2022).

    Article  Google Scholar 

  92. Liu, Q. Y., Fu, M. & Liu, X. F. Shadow enhancement using 2D dynamic stochastic resonance for hyperspectral image classification. Remote. Sens. 15, 1820 (2023).

    Article  Google Scholar 

  93. Liu, W. K. et al. Masked graph convolutional network for small sample classification of hyperspectral images. Remote. Sens. 15, 1869 (2023).

    Article  Google Scholar 

  94. Xu, Y. et al. A deep learning model for rapid classification of tea coal disease. Plant. Methods 19, 98 (2023).

    Article  Google Scholar 

  95. Zhang, Z. L. et al. Multireceptive field: an adaptive path aggregation graph neural framework for hyperspectral image classification. Expert. Syst. Appl. 217, 119508 (2023).

    Article  Google Scholar 

  96. Ogen, Y., Denk, M., Glaesser, C. & Eichstaedt, H. A novel method for predicting the geochemical composition of tailings with laboratory field and hyperspectral airborne data using a regression and classification-based approach. Eur. J. Remote. Sens. 55, 453–470 (2022).

    Article  Google Scholar 

  97. Wang, W. B., Yang, Z. J., Huang, P., Zhang, F. L. & Tang, W. Triple-regularized latent subspace discriminative regression for hyperspectral image classification. IEEE J. Sel.Top. Appl. Earth Obs. Remote. Sens. 14, 7310–7323 (2021).

    Article  Google Scholar 

  98. Windrim, L., Melkumyan, A., Murphy, R. J., Chlingaryan, A. & Leung, R. Unsupervised ore/waste classification on open-cut mine faces using close-range hyperspectral data. Geosci. Front. 14, 101562 (2023).

    Article  Google Scholar 

  99. Antequera, T., Caballero, D., Grassi, S., Uttaro, B. & Perez-Palacios, T. Evaluation of fresh meat quality by hyperspectral imaging (HSI), nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI): a review. Meat Sci. 172, 108340 (2021).

    Article  Google Scholar 

  100. Qiu, R. C., Zhao, Y. L., Kong, D. D., Wu, N. & He, Y. Development and comparison of classification models on VIS-NIR hyperspectral imaging spectra for qualitative detection of the Staphylococcus aureus in fresh chicken breast. Spectrochim. Acta Part. A 285, 121838 (2023).

    Article  Google Scholar 

  101. Zhang, W. X., Pan, L. & Lu, L. X. Prediction of TVB-N content in beef with packaging films using visible-near infrared hyperspectral imaging. Food Control. 147, 109562 (2023).

    Article  Google Scholar 

  102. Li, Q., Wang, Q. & Li, X. L. Exploring the relationship between 2D/3D convolution for hyperspectral image super-resolution. IEEE Trans. Geosci. Electron. 59, 8693–8703 (2021).

    Google Scholar 

  103. Wang, S. N., Das, A. K., Pang, J. & Liang, P. Real-time monitoring the color changes of large yellow croaker (Larimichthys crocea) fillets based on hyperspectral imaging empowered with artificial intelligence. Food Chem. 382, 132343 (2022).

    Article  Google Scholar 

  104. Hu, Y. Y. et al. High zoom ratio foveated snapshot hyperspectral imaging for fruit pest monitoring. J. Spectrosc. 2023, 2286867 (2023).

    Article  Google Scholar 

  105. Xia, C. J. et al. Locating the oil leakage on power equipment via ultraviolet-induced hyperspectral imaging technology. IEEE Trans. Instrum. Meas. 72, 4503912 (2023).

    Article  Google Scholar 

  106. Xiang, Y. et al. Deep learning and hyperspectral images based tomato soluble solids content and firmness estimation. Front. Plant. Sci. 13, 860656 (2022).

    Article  Google Scholar 

  107. Terentev, A., Dolzhenko, V., Fedotov, A. & Eremenko, D. Current state of hyperspectral remote sensing for early plant disease detection: a review. Sensors 22, 757 (2022).

    Article  Google Scholar 

  108. Kharel, T. P. et al. Mixed-species cover crop biomass estimation using planet imagery. Sensors 23, 1541 (2023).

    Article  Google Scholar 

  109. Varela, J. I. et al. A novel high-throughput hyperspectral scanner and analytical methods for predicting maize kernel composition and physical traits. Food Chem. 391, 133264 (2022).

    Article  Google Scholar 

  110. Ma, T., Tsuchikawa, S. & Inagaki, T. Rapid and non-destructive seed viability prediction using near-infrared hyperspectral imaging coupled with a deep learning approach. Comput. Electron. Agric. 177, 105683 (2020).

    Article  Google Scholar 

  111. Ndlovu, P. F., Magwaza, L. S., Tesfay, S. Z. & Mphahlele, R. R. Destructive and rapid non-invasive methods used to detect adulteration of dried powdered horticultural products: a review. Food Res. Int. 151, 111198 (2022).

    Article  Google Scholar 

  112. Bai, Z. Z. et al. A back-propagation neural network model using hyperspectral imaging applied to variety nondestructive detection of cereal. J. Food Process. Eng. 45, e13973 (2022).

    Article  Google Scholar 

  113. Li, L. Q. et al. High-sensitivity hyperspectral coupled self-assembled nanoporphyrin sensor for monitoring black tea fermentation. Sens. Actuators, B 346, 130541 (2021).

    Article  Google Scholar 

  114. Ramirez, W. A. et al. Multispectral camera system design for replacement of hyperspectral cameras for detection of aflatoxin B-1. Comput. Electron. Agric. 198, 107078 (2022).

    Article  Google Scholar 

  115. Siano, D. B., Abdullakasim, W., Terdwongworakul, A. & Phuangsombut, K. Improving the performance of the model developed from the classification of adulterated honey with different botanical origins based on near-infrared hyperspectral imaging system and supervised classification algorithms. Infrared Phys. Technol. 131, 104692 (2023).

    Article  Google Scholar 

  116. Hu, Y. et al. Reliable identification of Oolong tea species: nondestructive testing classification based on fluorescence hyperspectral technology and machine learning. Agric. Basel 11, 1106 (2021).

    Google Scholar 

  117. Panda, B. K. et al. Rancidity and moisture estimation in shelled almond kernels using NIR hyperspectral imaging and chemometric analysis. J. Food Eng. 318, 110889 (2022).

    Article  Google Scholar 

  118. Liu, X. Y. et al. Residual image recovery method based on the dual-camera design of a compressive hyperspectral imaging system. Opt. Express 30, 20100–20116 (2022).

    Article  Google Scholar 

  119. Wei, B. C., Zhao, Z., Han, J., Lu, J. & Qi, H. C. Rapid hyperspectral imaging system via sub-sampling coding. IEEE J. Sel.Top. Appl. Earth Obs. Remote. Sens. 15, 2986–2997 (2022).

    Article  Google Scholar 

  120. Chen, C. et al. Computational hyperspectral devices based on quasi-random metasurface supercells. Nanoscale 15, 8854–8862 (2023).

    Article  Google Scholar 

  121. Wu, H. B., Li, M. X. & Wang, A. L. A novel meta-learning-based hyperspectral image classification algorithm. Front. Phys. 11, 1163555 (2023).

    Article  Google Scholar 

  122. Ma, X. T. et al. Urban feature extraction within a complex urban area with an improved 3D-CNN using airborne hyperspectral data. Remote. Sens. 15, 992 (2023).

    Article  Google Scholar 

  123. Yang, F. Y. et al. Detection of starch in minced chicken meat based on hyperspectral imaging technique and transfer learning. J. Food Process. Eng. 46, e14304 (2023).

    Article  Google Scholar 

  124. Feng, B., Liu, Y., Chi, H. & Chen, X. Z. Hyperspectral remote sensing image classification based on residual generative adversarial neural networks. Signal. Process. 213, 109202 (2023).

    Article  Google Scholar 

  125. Sherman, S. P., Parish, R. M., Greenlee, D. M. & Miller, D. S. Assessing raw material diversity at Poverty Point (16WC5) using non-destructive reflectance spectroscopy. Geoarchaeology 38, 76–88 (2023).

    Article  Google Scholar 

  126. Lin, D. Y., Yu, C. Y., Ku, C. A. & Chung, C. K. Design, fabrication, and applications of SERS substrates for food safety detection: review. Micromachines 14, 1343 (2023).

    Article  Google Scholar 

  127. Birse, N., Burns, D. T., Walker, M. J., Quaglia, M. & Elliott, C. T. Food allergen analysis: a review of current gaps and the potential to fill them by matrix-assisted laser desorption/ionization. Compr. Rev. Food Sci. Food Saf. 22, 3984–4003 (2023).

    Article  Google Scholar 

  128. Wu, L. et al. A review on current progress of Raman-based techniques in food safety: from normal Raman spectroscopy to SESORS. Food Res. Int. 169, 112944 (2023).

    Article  Google Scholar 

  129. Wen, Y. H. et al. Molecular imprinting-based ratiometric fluorescence sensors for environmental and food analysis. Analyst 148, 3971–3985 (2023).

    Article  Google Scholar 

  130. Li, Q. X., Lei, T. & Sun, D. W. Analysis and detection using novel terahertz spectroscopy technique in dietary carbohydrate-related research: principles and application advances. Crit. Rev. Food Sci. Nutr. 63, 1793–1805 (2023).

    Article  Google Scholar 

  131. Park, S., Yang, M., Yim, D. G., Jo, C. & Kim, G. VIS/NIR hyperspectral imaging with artificial neural networks to evaluate the content of thiobarbituric acid reactive substances in beef muscle. J. Food Eng. 350, 111500 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the Science and Technology Plan Projects of Guangzhou City (2024B03J1315) (H.P.) and the Guangdong Basic and Applied Basic Research Foundation (2022A1515012489) (H.P.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed substantially to discussions of its content. H.P. and J.Y. wrote the first draft of the article. D.-W.S. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Da-Wen Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Weidong Zhou, and the other, anonymous, reviewer(s), for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Food-101: https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/

Food-500: http://123.57.42.89/Dataset_ict/ISIA_Food500_Dir/

UECFood-256: http://foodcam.mobi/dataset256.html

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, DW., Pu, H. & Yu, J. Applications of hyperspectral imaging technology in the food industry. Nat Rev Electr Eng 1, 251–263 (2024). https://doi.org/10.1038/s44287-024-00033-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44287-024-00033-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing