Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arsenic water decontamination by a bioinspired As-sequestering porous membrane

Abstract

Arsenic water contamination is a major issue worldwide, particularly in regions where groundwater is the primary source of drinking and irrigation water. Therefore, there is an urgent need of addressing this problem in an effective and environmentally friendly manner. So far, several conventional and emerging removal technologies have been implemented for arsenic removal from water, including coagulation, flocculation, adsorption and membrane-based separation approaches. Here we show the successful development of a new bio-inspired porous membrane that has been made selective for the removal of arsenic (As(V) as well as the more toxic and difficult to remove As(III)) present in arsenic-contaminated groundwaters. The arsenic removal efficiency of the membrane has been successfully assessed both in model solutions and in a real groundwater. Very importantly, owing to the high selectivity of the membrane towards arsenic, no substantial demineralization occurred with the real groundwater, which therefore became directly suitable for human consumption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of the porous As-sequestring membrane PIL-S-M.
Fig. 2: Extraction efficiency of PIL-S-M membrane in As-containing (500 μg l−1) model solutions.
Fig. 3: EXAFS synchrotron studies on PIL-S-M after filtration of As(III) solution (500 μg l−1) at pH 6.5.
Fig. 4: Extraction efficiency of PIL-S-M membrane in naturally As-containing groundwater Sorbo 2 (Sila Massif, Calabria, Italy).

Similar content being viewed by others

Data availability

All relevant data generated and analysed during this study, which include experimental, spectroscopic, membrane characterization, analytic and computational data, are included in this article, its Supplementary Information and the Open Science Framework repository with the identifier https://osf.io/5xrab/.

References

  1. Bundschuh, J. et al. Global arsenic dilemma and sustainability. J. Hazard. Mat. 436, 129197 (2022).

    Article  CAS  Google Scholar 

  2. Shakoor, M. et al. Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int. J. Environ. Res. Public Health 12, 12371–12390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368, 845–850 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. IARC working group on the evaluation of carcinogenic risks to humans, some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr. Eval. Carcinog. Risks Humans 84, 1–477 (2004).

  5. Guidelines for drinking-water quality: fourth edition incorporating the first addendum. World Health Organization https://doi.org/10.2105/AJPH.17.2.162-b (2017).

  6. Algieri, C. et al. Arsenic removal from groundwater by membrane technology: advantages, disadvantages, and effect on human health. Groundwater Sustain. Dev. 19, 100815 (2022).

    Article  Google Scholar 

  7. Dilpazeer, F. et al. A comprehensive review of the latest advancements in controlling arsenic contaminants in groundwater. Water 15, 478 (2023).

    Article  CAS  Google Scholar 

  8. Alka, S. et al. Arsenic removal technologies and future trends: a mini review. J. Clean. Prod. 278, 123805 (2021).

    Article  CAS  Google Scholar 

  9. Ge, Q., Lau, C. H. & Liu, M. A novel multi-charged draw solute that removes organic arsenicals from water in a hybrid membrane process. Environ. Sci. Technol. 52, 3812–3819 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Nurchi, V. M. et al. Arsenic toxicity: molecular targets and therapeutic agents. Biomolecules 10, 235 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, S.-Y. et al. Poly(ionic liquid) composites. Chem. Soc. Rev. 49, 1726–1755 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Smedley, P. & Kinniburgh, D. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517–568 (2002).

    Article  CAS  Google Scholar 

  13. Shen, S., Li, X.-F., Cullen, W. R., Weinfeld, M. & Le, X. C. Arsenic binding to proteins. Chem. Rev. 113, 7769–7792 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sing, K. S. W. et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985).

    Article  CAS  Google Scholar 

  15. Jain, A. & Loeppert, R. H. Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite. J. Environ. Qual. 29, 1422–1430 (2000).

    Article  CAS  Google Scholar 

  16. Davis, S. A. & Misra, M. Transport model for the adsorption of oxyanions of selenium (IV) and arsenic (V) from water onto lanthanum- and aluminum-based oxides. J. Colloid Interface Sci. 188, 340–350 (1997).

    Article  CAS  Google Scholar 

  17. Biswas, A. et al. Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: insight from surface complexation modeling. Water Res. 55, 30–39 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Youngran, J., Fan, M., Van Leeuwen, J. & Belczyk, J. F. Effect of competing solutes on arsenic(V) adsorption using iron and aluminum oxides. J. Environ. Sci. 19, 910–919 (2007).

    Article  Google Scholar 

  19. Nicomel, N., Leus, K., Folens, K., Van Der Voort, P. & Laing, G. D. Technologies for arsenic removal from water: current status and future perspectives. Int. J. Environ. Res. Public Health 13, 62 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Singh, R., Singh, S., Parihar, P., Singh, V. P. & Prasad, S. M. Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol. Environ. Saf. 112, 247–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Giles, D. E., Mohapatra, M., Issa, T. B., Anand, S. & Singh, P. Iron and aluminium based adsorption strategies for removing arsenic from water. J. Environ. Manage. 92, 3011–3022 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Roy, P. K., Choudhury, M. R. & Ali, M. A. As (III) and As (V) Adsorption on magnetite nanoparticles: adsorption isotherms, effect of pH and phosphate, and adsorption kinetics. Int. J. Chem. Environ. Eng. 4, 55–63 (2013).

    CAS  Google Scholar 

  23. Pena, M. E., Korfiatis, G. P., Patel, M., Lippincott, L. & Meng, X. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res. 39, 2327–2337 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Tang, W., Li, Q., Gao, S. & Shang, J. K. Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. J. Hazard. Mater. 192, 131–138 (2011).

    CAS  PubMed  Google Scholar 

  25. Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M. & Tufenkji, N. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 44, 6532–6549 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Siddique, T., Dutta, N. K. & Choudhury, N. R. Nanofiltration for arsenic removal: challenges, recent developments, and perspectives. Nanomaterials 10, 1323 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fang, J. & Deng, B. Rejection and modeling of arsenate by nanofiltration: contributions of convection, diffusion and electromigration to arsenic transport. J. Membr. Sci. 453, 42–51 (2014).

    Article  CAS  Google Scholar 

  28. Sato, Y., Kang, M., Kamei, T. & Magara, Y. Performance of nanofiltration for arsenic removal. Water Res. 36, 3371–3377 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Criscuoli, A. & Figoli, A. Pressure-driven and thermally-driven membrane operations for the treatment of arsenic-contaminated waters: a comparison. J. Hazard. Mater. 370, 147–155 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Qasim, M., Badrelzaman, M., Darwish, N. N., Darwish, N. A. & Hilal, N. Reverse osmosis desalination: a state-of-the-art review. Desalination 459, 59–104 (2019).

    Article  CAS  Google Scholar 

  31. Clancy, T. M., Hayes, K. F. & Raskin, L. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water. Environ. Sci. Technol. 47, 10799–10812 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  33. Frisch, M. J. et al. Gaussian 16, Revision D.01 (Gaussian, Inc., 2016).

  34. Tomasi, J., Mennucci, B. & Cancès, E. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J. Mol. Struct. 464, 211–226 (1999).

    Article  CAS  Google Scholar 

  35. Doherty, S. et al. Highly efficient aqueous phase chemoselective hydrogenation of α,β-unsaturated aldehydes catalysed by phosphine-decorated polymer immobilized IL-stabilized PdNPs. Green Chem. 19, 1635–1641 (2017).

    Article  CAS  Google Scholar 

  36. Lin, X., Godeau, G. & Grinstaff, M. W. A reversible supramolecular assembly containing ionic interactions and disulfide linkages. New J. Chem. 38, 5186–5189 (2014).

    Article  CAS  Google Scholar 

  37. Simone, S. et al. Preparation and characterization of polymeric-hybrid PES/TiO2 hollow fiber membranes for potential applications in water treatment. Fibers 5, 14 (2017).

    Article  Google Scholar 

  38. Figoli, A. et al. Innovative hydrophobic coating of perfluoropolyether (PFPE) on commercial hydrophilic membranes for DCMD application. J. Membr. Sci. 522, 192–201 (2017).

    Article  CAS  Google Scholar 

  39. Galiano, F. et al. A step forward to a more efficient wastewater treatment by membrane surface modification via polymerizable bicontinuous microemulsion. J. Membr. Sci. 482, 103–114 (2015).

    Article  CAS  Google Scholar 

  40. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Newville, M. EXAFS analysis using FEFF and FEFFIT. J. Synchrotron Radiat. 8, 96–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Apollaro, C., Fuoco, I., Brozzo, G. & De Rosa, R. Release and fate of Cr(VI) in the ophiolitic aquifers of Italy: the role of Fe(III) as a potential oxidant of Cr(III) supported by reaction path modelling. Sci. Total Environ. 660, 1459–1471 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Figoli, A. et al. Arsenic-contaminated groundwaters remediation by nanofiltration. Sep. Purif. Technol. 238, 116461 (2020).

    Article  CAS  Google Scholar 

  44. Meng, X., Korfiatis, G. P., Jing, C. & Christodoulatos, C. Redox transformations of arsenic and iron in water treatment sludge during aging and TCLP extraction. Environ. Sci. Technol. 35, 3476–3481 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Wolery T. W. & Jarek, R. L. Software User’s Manual. EQ3/6, Version 8.0 (Sandia National Laboratories, 2003).

  46. Marini, L. & Accornero, M. Prediction of the thermodynamic properties of metal–arsenate and metal–arsenite aqueous complexes to high temperatures and pressures and some geological consequences. Environ. Geol. 52, 1343–1363 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the Regione Calabria (Italy), POR Project AsSE, grant no. J28I17000030006 ‘Arsenic separation from waters by membrane processes’ (A.F., C.A. and B.G.). The authors thank M. Frappa from Institute on Membrane Technology, National Research Council, for his assistance in membrane preparation. We dedicate this paper to the memory of Cinzia Chiappe, a truly exceptional scholar and researcher.

Author information

Authors and Affiliations

Authors

Contributions

F.G., R.M., C.S.P., J.B., J.R., C.C., A.F. and B.G. conceptualized and designed the study. F.G. and A.F. prepared and characterized the membranes. R.M. and L.G. prepared and characterized the polymerizable ionic liquids. C.S.P. performed the theoretical calculations. F.G. conducted the As extraction tests. S.-L.W. carried out the EXAFS synchrotron studies. C.A. collected the natural groundwater and performed the chemical analyses. F.P. conducted the XPS studies. F.G. and B.G. wrote the original draft of the manuscript, with the contributions of all other authors. F.G., A.F. and B.G. contributed to the writing of all subsequent versions of the manuscript. B.G. supervised, convened and coordinated the study.

Corresponding authors

Correspondence to Christian S. Pomelli, Alberto Figoli or Bartolo Gabriele.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Cher Hon Lau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Details on theoretical calculations on the interactions between PIL-S-M and As(V) or As(III), Supplementary Figs. 1–12 and Tables 1 and 2, and details on cross-flow filtration tests.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2a,b.

Source Data Fig. 4

Statistical source data for Fig. 4a,c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiano, F., Mancuso, R., Guazzelli, L. et al. Arsenic water decontamination by a bioinspired As-sequestering porous membrane. Nat Water 2, 350–359 (2024). https://doi.org/10.1038/s44221-024-00220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00220-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing