Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hybrid cycloolefin ligands for palladium–olefin cooperative catalysis

Abstract

The engineering of molecular catalysts in homogeneous catalysis enables new catalytic modes, which leads to efficient synthetic transformations. In this regard, the design of ligands for transition metal catalysis has played a major role. In transition metal catalysed reactions, olefins can serve as steering ligands by tuning the electronic and steric nature of the metal centre. Here we report unstrained olefin ligands that bear a P or S coordination site for use in the Pd-catalysed Catellani reaction. This olefin ligand shows a covalent catalytic function and enables an efficient ipso,ortho-difunctionalization of iodoarenes. Mechanistic analysis reveals a reversible covalent bonding between the substrate and the cycloolefin unit of the ligand, which forms key organopalladium intermediates to enable a new reactivity. Our results demonstrate a design concept that employs hybrid cycloolefin ligands as a covalent catalytic module, which opens up possibilities for further cooperative catalysis with other transition metal–olefin hybrids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Olefin ligands and co-catalysts.
Fig. 2: Hybrid olefin ligands for Pd–olefin cooperative catalysis.
Fig. 3: Synthetic utility of the Pd–L19 catalytic system.
Fig. 4: Mechanism of the Pd–olefin cooperative catalysis with L4.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2060007 (9) and 2060009 (11). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Tsuji, J. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis (John Wiley, 2002).

  2. Stradiotto, M. & Lundgren, R. J. Ligand Design in Metal Chemistry: Reactivity and Catalysis (Wiley-VCH, 2016).

  3. Glorius, F. Chiral olefin ligands—new ‘spectators’ in asymmetric catalysis. Angew. Chem. Int. Ed. 43, 3364–3366 (2004).

    Article  CAS  Google Scholar 

  4. Defieber, C., Grützmacher, H. & Carreira, E. M. Chiral olefins as steering ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 47, 4482–4502 (2008).

    Article  CAS  Google Scholar 

  5. Feng, X. & Du, H. Synthesis of chiral olefin ligands and their application in asymmetric catalysis. Asian J. Org. Chem. 1, 204–213 (2012).

    Article  CAS  Google Scholar 

  6. Li, Y. & Xu, M.-H. Simple sulfur–olefins as new promising chiral ligands for asymmetric catalysis. Chem. Commun. 50, 3771–3782 (2014).

  7. Dong, H.-Q., Xu, M.-H., Feng, C.-G., Sun, X.-W. & Lin, G.-Q. Recent applications of chiral N-tert-butanesulfinyl imines, chiral diene ligands and chiral sulfur–olefin ligands in asymmetric synthesis. Org. Chem. Front. 2, 73–89 (2015).

    Article  CAS  Google Scholar 

  8. van der Vlugt, J. I. Cooperative catalysis with first-row late transition metals. Eur. J. Inorg. Chem. 2012, 363–375 (2012).

    Article  CAS  Google Scholar 

  9. Lyaskovskyy, V. & de Bruin, B. Redox non-innocent ligands: versatile new tools to control catalytic reactions. ACS Catal. 2, 270–279 (2012).

    Article  CAS  Google Scholar 

  10. Trincado, M. & Grützmacher, H. in Cooperative Catalysis (ed. Peters, R.) 67–110 (Wiley-VCH, 2015).

  11. Berben, L. A., de Bruin, B. & Heyduk, A. F. Non-innocent ligands. Chem. Commun. 51, 1553–1554 (2015).

    Article  CAS  Google Scholar 

  12. Catellani, M. Catalytic multistep reactions via palladacycles. Synlett 2003, 0298-0313 (2003).

    Google Scholar 

  13. Catellani, M., Motti, E. & Della Ca', N. Catalytic sequential reactions involving palladacycle-directed aryl coupling steps. Acc. Chem. Res. 41, 1512–1522 (2008).

  14. Martins, A., Mariampillai, B. & Lautens, M. Synthesis in the key of Catellani: norbornene-mediated ortho C–H functionalization. Top. Curr. Chem. 292, 1–33 (2010).

    CAS  PubMed  Google Scholar 

  15. Della Ca', N., Fontana, M., Motti, E. & Catellani, M. Pd/norbornene: a winning combination for selective aromatic functionalization via C–H bond activation. Acc. Chem. Res. 49, 1389–1400 (2016).

  16. Wegmann, M., Henkel, M. & Bach, T. C–H alkylation reactions of indoles mediated by Pd(II) and norbornene: applications and recent developments. Org. Biomol. Chem. 16, 5376–5385 (2018).

    Article  CAS  Google Scholar 

  17. Wang, J. & Dong, G. Palladium/norbornene cooperative catalysis. Chem. Rev. 119, 7478–7528 (2019).

    Article  CAS  Google Scholar 

  18. Gu, Z., Zhao, K. & Ding, L. Development of new electrophiles in palladium/norbornene-catalyzed ortho-functionalization of aryl halides. Synlett 30, 129–140 (2018).

    Article  Google Scholar 

  19. Catellani, M., Frignani, F. & Rangoni, A. A complex catalytic cycle leading to a regioselective synthesis of o,o′-disubstituted vinylarenes. Angew. Chem. Int. Ed. 36, 119–122 (1997).

    Article  CAS  Google Scholar 

  20. Lautens, M. & Piguel, S. A new route to fused aromatic compounds by using a palladium-catalyzed alkylation–alkenylation sequence. Angew. Chem. Int. Ed. 39, 1045–1046 (2000).

    Article  CAS  Google Scholar 

  21. Bressy, C., Alberico, D. & Lautens, M. A route to annulated indoles via a palladium-catalyzed tandem alkylation/direct arylation reaction. J. Am. Chem. Soc. 127, 13148–13149 (2005).

    Article  CAS  Google Scholar 

  22. Li, R. & Dong, G. Structurally modified norbornenes: a key factor to modulate reaction selectivity in the palladium/norbornene cooperative catalysis. J. Am. Chem. Soc. 142, 17859–17875 (2020).

    Article  CAS  Google Scholar 

  23. Dong, Z., Wang, J., Ren, Z. & Dong, G. Ortho C–H acylation of aryl iodides by palladium/norbornene catalysis. Angew. Chem. Int. Ed. 54, 12664–12668 (2015).

    Article  CAS  Google Scholar 

  24. Shen, P.-X., Wang, X.-C., Wang, P., Zhu, R.-Y. & Yu, J.-Q. Ligand-enabled meta-C–H alkylation and arylation using a modified norbornene. J. Am. Chem. Soc. 137, 11574–11577 (2015).

  25. Liu, J. et al. Pd(II)/norbornene-catalyzed meta-C–H alkylation of nosyl-protected phenylalanines. J. Org. Chem. 83, 13211–13216 (2018).

    Article  CAS  Google Scholar 

  26. Liu, Z.-S. et al. Palladium/norbornene cooperative catalysis to access tetrahydronaphthalenes and indanes with a quaternary center. ACS Catal. 8, 4783–4788 (2018).

    Article  CAS  Google Scholar 

  27. Cai, W. & Gu, Z. Selective ortho thiolation enabled by tuning the ancillary ligand in palladium/norbornene catalysis. Org. Lett. 21, 3204–3209 (2019).

    Article  CAS  Google Scholar 

  28. Ding, Y.-N. et al. Palladium-catalyzed ortho-C–H glycosylation/ipso-alkenylation of aryl iodides. J. Org. Chem. 85, 11280–11296 (2020).

  29. Ye, J. & Lautens, M. Palladium-catalysed norbornene-mediated C–H functionalization of arenes. Nat. Chem. 7, 863–870 (2015).

    Article  CAS  Google Scholar 

  30. Mellah, M., Voituriez, A. & Schulz, E. Chiral sulfur ligands for asymmetric catalysis. Chem. Rev. 107, 5133–5209 (2007).

    Article  CAS  Google Scholar 

  31. Gorsline, B. J., Wang, L., Ren, P. & Carrow, B. P. C–H alkenylation of heteroarenes: mechanism, rate, and selectivity changes enabled by thioether ligands. J. Am. Chem. Soc. 139, 9605–9614 (2017).

    Article  CAS  Google Scholar 

  32. Naksomboon, K., Valderas, C., Gómez-Martínez, M., Álvarez-Casao, Y. & Fernández-Ibáñez, M. A. S,O-ligand-promoted palladium-catalyzed C–H functionalization reactions of nondirected arenes. ACS Catal. 7, 6342–6346 (2017).

  33. Wang, L. & Carrow, B. P. Oligothiophene synthesis by a general C–H activation mechanism: electrophilic concerted metalation-deprotonation (eCMD). ACS Catal. 9, 6821–6836 (2019).

    Article  CAS  Google Scholar 

  34. Gao, Q. et al. Modular dual-tasked C–H methylation via the Catellani strategy. J. Am. Chem. Soc. 141, 15986–15993 (2019).

    Article  CAS  Google Scholar 

  35. Shi, G., Shao, C., Ma, X., Gu, Y. & Zhang, Y. Pd(II)-catalyzed Catellani-type domino reaction utilizing arylboronic acids as substrates. ACS Catal. 8, 3775–3779 (2018).

    Article  CAS  Google Scholar 

  36. Catellani, M., Motti, E. & Minari, M. S. Symmetrical and unsymmetrical 2,6-dialkyl-1,1′-biaryls by combined catalysis of aromatic alkylation via palladacycles and Suzuki-type coupling. Chem. Commun. 2000, 157–158 (2000).

    Article  Google Scholar 

  37. Ye, C., Zhu, H. & Chen, Z. Synthesis of biaryl tertiary amines through Pd/norbornene joint catalysis in a remote C–H amination/Suzuki coupling reaction. J. Org. Chem. 79, 8900–8905 (2014).

    Article  CAS  Google Scholar 

  38. Wilhelm, T. & Lautens, M. Palladium-catalyzed alkylation–hydride reduction sequence: synthesis of meta-substituted arenes. Org. Lett. 7, 4053–4056 (2005).

    Article  CAS  Google Scholar 

  39. Motti, E., Rossetti, M., Bocelli, G. & Catellani, M. Palladium catalyzed multicomponent reactions in ordered sequence: new syntheses of o,o′-dialkylsubstituted diarylacetylenes and diarylalkylidenehexahydromethanofluorenes. J. Organomet. Chem. 689, 3741–3749 (2004).

    Article  CAS  Google Scholar 

  40. Wang, J., Li, R., Dong, Z., Liu, P. & Dong, G. Complementary site-selectivity in arene functionalization enabled by overcoming the ortho constraint in palladium/norbornene catalysis. Nat. Chem. 10, 866–872 (2018).

    Article  CAS  Google Scholar 

  41. Lv, W., Chen, Y., Wen, S., Ba, D. & Cheng, G. Modular and stereoselective synthesis of C-aryl glycosides via Catellani reaction. J. Am. Chem. Soc. 142, 14864–14870 (2020).

    Article  CAS  Google Scholar 

  42. Dong, Z. & Dong, G. Ortho vs ipso: site-selective Pd and norbornene-catalyzed arene C–H amination using aryl halides. J. Am. Chem. Soc. 135, 18350–18353 (2013).

    Article  CAS  Google Scholar 

  43. Zhou, P.-X. et al. Palladium-catalyzed acylation/alkenylation of aryl iodide: a domino approach based on the Catellani–Lautens reaction. ACS Catal. 5, 4927–4931 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Natural Science Foundation of China (grant number 21822304 to L.J.). M.-T. Zhang is acknowledged for insightful discussions. We thank F.-Y. Wang for performing a control experiment with substrate 1n and X. Xu for repeating the synthesis of complexes 9 and 11. The technological platform of CBMS is acknowledged for providing instrumentation.

Author information

Authors and Affiliations

Authors

Contributions

L.J. and Y.-X.Z. conceived the work and designed the experiments. Y.-X.Z. performed the laboratory experiments. L.J. and Y.-X.Z. analysed the data and co-wrote the manuscript.

Corresponding author

Correspondence to Lei Jiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks M. Ángeles Fernández-Ibáñez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Thomas West was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Detailed experimental procedures and characterization data.

Supplementary Data 1

Crystallographic data of complex 9 (CCDC 2060007).

Supplementary Data 2

Structure factors for crystallographic complex 9 (CCDC 2060007).

Supplementary Data 3

Crystallographic data of complex 11 (CCDC 2060009).

Supplementary Data 4

Structure factors for crystallographic complex 11 (CCDC 2060009).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YX., Jiao, L. Hybrid cycloolefin ligands for palladium–olefin cooperative catalysis. Nat Synth 1, 180–187 (2022). https://doi.org/10.1038/s44160-021-00019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-021-00019-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing