Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Soil hydrology in the Earth system

Abstract

Soil hydrological processes (SHP) support ecosystems, modulate the impact of climate change on terrestrial systems and control feedback mechanisms between water, energy and biogeochemical cycles. However, land-use changes and extreme events are increasingly impacting these processes. In this Review, we describe SHP across scales and examine their links with soil properties, ecosystem processes and climate. Soil structure influences SHP such as infiltration, soil water redistribution and root water uptake on small scales. On local scales, SHP are driven by root water uptake, vegetation and groundwater dynamics. Regionally, SHP are impacted by extreme events such as droughts, floods, heatwaves and land-use change; however, antecedent and current SHP partially determine the broader effects of extreme events. Emerging technologies such as wireless and automated sensing, soil moisture observation through novel synthetic aperture radars satellites, big data analysis and machine learning approaches offer unique opportunities to advance soil hydrology. These advances, in tandem with the inclusion of more key soil types and properties in models, will be pivotal in predicting the role of SHP during global change.

Key points

  • Local-scale soil hydrological processes regulate climatic effects on the global terrestrial water cycle by controlling energy and greenhouse gas fluxes.

  • Regional-scale soil hydrology is modulated by land-use and climate-change effects on soil structure.

  • Global-scale soil hydrology benefits from emerging technologies and big data analysis, but still faces parameterization challenges related to soil properties, such as soil structure and soil hydraulic parameters.

  • Processes such as freeze-thawing, cryoturbation, peat degradation, and swelling and shrinking control soil hydraulic parameters in distinct soil groups, such as permafrost and peat soils.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The soil hydrological system from the pore to the global scales.
Fig. 2: The soil structure formation and timescales.
Fig. 3: The pedotransfer functions concept.
Fig. 4: Effect of soil properties and moisture status on water fluxes in the soil–plant system.
Fig. 5: Cyber-physical infrastructures for soil hydrology.

Similar content being viewed by others

References

  1. Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).

    Article  Google Scholar 

  2. Hallegatte, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Change 3, 802–806 (2013).

    Article  Google Scholar 

  3. Lehner, F. et al. Projected drought risk in 1.5°C and 2°C warmer climates. Geophys. Res. Lett. 44, 7419–7428 (2017).

    Article  Google Scholar 

  4. Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobel, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11, 306–328 (2021).

    Article  Google Scholar 

  5. Wang-Erlandsson, L. et al. A planetary boundary for green water. Nat. Rev. Earth Environ. 3, 380–392 (2022).

    Article  Google Scholar 

  6. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article  Google Scholar 

  7. Saini, R., Wang, G. L. & Pal, J. S. Role of soil moisture feedback in the development of extreme summer drought and flood in the United States. J. Hydrometeorol. 17, 2191–2207 (2016).

    Article  Google Scholar 

  8. Bloschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).

    Article  Google Scholar 

  9. Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: A review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  Google Scholar 

  10. Lohse, K. A., Brooks, P. D., McIntosh, J. C., Meixner, T. & Huxman, T. E. Interactions between biogeochemistry and hydrologic systems. Annu. Rev. Environ. Resour. 34, 65–96 (2009).

    Article  Google Scholar 

  11. Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).

    Article  Google Scholar 

  12. Vereecken, H. et al. Infiltration from the pedon to global grid scales: An overview and outlook for land surface modeling. Vadose Zone J. 18, 1–53 (2019).

    Article  Google Scholar 

  13. Lin, H. et al. Hydropedology: Synergistic integration of pedology and hydrology. Water Resour. Res. 42, W05301 (2006).

    Article  Google Scholar 

  14. Bouma, J. Hydropedology as a powerful tool for environmental policy research. Geoderma 131, 275–286 (2006).

    Article  Google Scholar 

  15. Lin, H. Earth’s Critical Zone and hydropedology: concepts, characteristics, and advances. Hydrol. Earth Syst. Sci. 14, 25–45 (2010).

    Article  Google Scholar 

  16. Brooks, P. D. et al. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resour. Res. 51, 6973–6987 (2015).

    Article  Google Scholar 

  17. Robinson, D. A. et al. Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Glob. Change Biol. 25, 1895–1904 (2019).

    Article  Google Scholar 

  18. Young, I. M. & Crawford, J. W. Interactions and self-organization in the soil-microbe complex. Science 304, 1634–1637 (2004).

    Article  Google Scholar 

  19. Totsche, K. U. et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 181, 104–136 (2018).

    Article  Google Scholar 

  20. Peth, S. et al. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography. Soil Sci. Soc. Am. J. 72, 897–907 (2008).

    Article  Google Scholar 

  21. Athmann, M. et al. Six months of L. terrestris L. activity in root-formed biopores increases nutrient availability, microbial biomass and enzyme activity. Appl. Soil Ecol. 120, 135–142 (2017).

    Article  Google Scholar 

  22. Wendel, A. S., Bauke, S. L., Amelung, W. & Knief, C. Root-rhizosphere-soil interactions in biopores. Plant Soil 475, 253–277 (2022).

    Article  Google Scholar 

  23. Kautz, T. et al. Contribution of anecic earthworms to biopore formation during cultivation of perennial ley crops. Pedobiologia 57, 47–52 (2014).

    Article  Google Scholar 

  24. Katuwal, S. et al. Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography. Geoderma 237, 9–20 (2015).

    Article  Google Scholar 

  25. Jarvis, N. J. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 58, 523–546 (2007).

    Article  Google Scholar 

  26. Bonetti, S., Wei, Z. W. & Or, D. A framework for quantifying hydrologic effects of soil structure across scales. Commun. Earth Environ. 2, 107 (2021).

    Article  Google Scholar 

  27. Or, D., Keller, T. & Schlesinger, W. H. Natural and managed soil structure: On the fragile scaffolding for soil functioning. Soil Tillage Res. 208, 104912 (2021).

    Article  Google Scholar 

  28. Awadhwal, N. K. & Thierstein, G. E. Soil crust and its impact on crop establishment: a review. Soil. Tillage Res. 5, 289–302 (1985).

    Article  Google Scholar 

  29. Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).

    Article  Google Scholar 

  30. Lobe, I., Sandhage-Hofmann, A., Brodowski, S., du Preez, C. C. & Amelung, W. Aggregate dynamics and associated soil organic matter contents as influenced by prolonged arable cropping in the South African Highveld. Geoderma 162, 251–259 (2011).

    Article  Google Scholar 

  31. Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev. 193, 299–316 (2019).

    Article  Google Scholar 

  32. Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    Article  Google Scholar 

  33. Hugelius, G. et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data 5, 393–402 (2013).

    Article  Google Scholar 

  34. Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).

    Article  Google Scholar 

  35. Rezanezhad, F. et al. Structure of peat soils and implications for water storage, flow and solute transport: a review update for geochemists. Chem. Geol. 429, 75–84 (2016).

    Article  Google Scholar 

  36. Andresen, C. G. et al. Soil moisture and hydrology projections of the permafrost region a model intercomparison. Cryosphere 14, 445–459 (2020).

    Article  Google Scholar 

  37. Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).

    Article  Google Scholar 

  38. Sapriza-Azuri, G., Gamazo, P., Razavi, S. & Wheater, H. S. On the appropriate definition of soil profile configuration and initial conditions for land surface-hydrology models in cold regions. Hydrol. Earth Syst. Sci. 22, 3295–3309 (2018).

    Article  Google Scholar 

  39. Slater, A. G. & Lawrence, D. M. Diagnosing present and future permafrost from climate models. J. Clim. 26, 5608–5623 (2013).

    Article  Google Scholar 

  40. Beven, K. J. & Kirkby, M. J. Towards a simple, physically based, variable contributing area model of catchment hydrology. Bull. Int. Assoc. Sci. Hydrol. 24, 43–69 (1979).

    Article  Google Scholar 

  41. Bechtold, M. et al. PEAT-CLSM: A specific treatment of peatland hydrology in the NASA catchment land surface model. J. Adv. Model. Earth Syst. 11, 2130–2162 (2019).

    Article  Google Scholar 

  42. Wania, R., Ross, I. & Prentice, I. C. Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes. Global Biogeochem. Cycles 23, GB3014 (2009).

    Google Scholar 

  43. Kirpotin, S. N. et al. Great Vasyugan Mire: How the world’s largest peatland helps addressing the world’s largest problems. Ambio 50, 2038–2049 (2021).

    Article  Google Scholar 

  44. Mahdianpari, M. et al. The third generation of pan-Canadian wetland map at 10 m resolution using multisource earth observation data on cloud computing platform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 8789–8803 (2021).

    Article  Google Scholar 

  45. Qiu, C. J. et al. ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales. Geosci. Model. Dev. 11, 497–519 (2018).

    Article  Google Scholar 

  46. Dai, Y. J. et al. Evaluation of soil thermal conductivity schemes for use in land surface modeling. J. Adv. Model. Earth Syst. 11, 3454–3473 (2019).

    Article  Google Scholar 

  47. Chadburn, S. E. et al. Impact of model developments on present and future simulations of permafrost in a global land-surface model. Cryosphere 9, 1505–1521 (2015).

    Article  Google Scholar 

  48. Waddington, J. M. et al. Hydrological feedbacks in northern peatlands. Ecohydrology 8, 113–127 (2015).

    Article  Google Scholar 

  49. Vereecken, H. et al. Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone J. 15, vzj2015.09.0131 (2016).

    Article  Google Scholar 

  50. Zha, Y. Y. et al. Review of numerical solution of Richardson–Richards equation for variably saturated flow in soils. Wiley Interdiscip. Rev. Water 6, e1364 (2019).

    Google Scholar 

  51. Weihermuller, L. et al. Choice of pedotransfer functions matters when simulating soil water balance fluxes. J. Adv. Model. Earth Syst. 13, e2020MS002404 (2021).

    Article  Google Scholar 

  52. Toth, B. et al. New generation of hydraulic pedotransfer functions for Europe. Eur. J. Soil Sci. 66, 226–238 (2015).

    Article  Google Scholar 

  53. Zhang, Y. G. & Schaap, M. G. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). J. Hydrol. 547, 39–53 (2017).

    Article  Google Scholar 

  54. Van Looy, K. et al. Pedotransfer functions in Earth system science: challenges and perspectives. Rev. Geophys. 55, 1199–1256 (2017).

    Article  Google Scholar 

  55. Vereecken, H. et al. Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review. Vadose Zone J. 9, 795–820 (2010).

    Article  Google Scholar 

  56. Zhang, Y. G. & Schaap, M. G. Estimation of saturated hydraulic conductivity with pedotransfer functions: a review. J. Hydrol. 575, 1011–1030 (2019).

    Article  Google Scholar 

  57. Romero-Ruiz, A., Linde, N., Keller, T. & Or, D. A review of geophysical methods for soil structure characterization. Rev. Geophys. 56, 672–697 (2018).

    Article  Google Scholar 

  58. Gupta, S., Lehmann, P., Bonetti, S., Papritz, A. & Or, D. Global prediction of soil saturated hydraulic conductivity using random forest in a covariate-based geotransfer function (CoGTF) framework. J. Adv. Model. Earth Syst. 13, e2020MS002242 (2021).

    Article  Google Scholar 

  59. Lehmann, P. et al. Clays are not created equal: how clay mineral type affects soil parameterization. Geophys. Res. Let. 48, e2021GL095311 (2021).

    Article  Google Scholar 

  60. Gupta, S. et al. Global mapping of soil water characteristics parameters — fusing curated data with machine learning and environmental covariates. Remote Sens. 14, 1947 (2022).

    Article  Google Scholar 

  61. Rabot, E., Wiesmeier, M., Schluter, S. & Vogel, H. J. Soil structure as an indicator of soil functions: a review. Geoderma 314, 122–137 (2018).

    Article  Google Scholar 

  62. Schaap, M. G., Leij, F. J. & van Genuchten, M. T. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci. Soc. Am. J. 62, 847–855 (1998).

    Article  Google Scholar 

  63. Elshorbagy, A. & Parasuraman, K. On the relevance of using artificial neural networks for estimating soil moisture content. J. Hydrol. 362, 1–18 (2008).

    Article  Google Scholar 

  64. Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Change 10, 691–695 (2020).

    Article  Google Scholar 

  65. Anderegg, W. R. L. et al. Plant water potential improves prediction of empirical stomatal models. PLoS One 12, e0185481 (2017).

    Article  Google Scholar 

  66. Katul, G. G. & Siqueira, M. B. Biotic and abiotic factors act in coordination to amplify hydraulic redistribution and lift. New Phytol. 187, 3–6 (2010).

    Article  Google Scholar 

  67. Quijano, J. C. & Kumar, P. Numerical simulations of hydraulic redistribution across climates: the role of the root hydraulic conductivities. Water Resour. Res. 51, 8529–8550 (2015).

    Article  Google Scholar 

  68. Neumann, R. B. & Cardon, Z. G. The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol. 194, 337–352 (2012).

    Article  Google Scholar 

  69. Quijano, J. C., Kumar, P. & Drewry, D. T. Passive regulation of soil biogeochemical cycling by root water transport. Water Resour. Res. 49, 3729–3746 (2013).

    Article  Google Scholar 

  70. Landsberg, J. J. & Fowkes, N. D. Water movement through plant roots. Ann. Bot. 42, 493–508 (1978).

    Article  Google Scholar 

  71. Meunier, F., Draye, X., Vanderborght, J., Javaux, M. & Couvreur, V. A hybrid analytical-numerical method for solving water flow equations in root hydraulic architectures. Appl. Math. Model. 52, 648–663 (2017).

    Article  Google Scholar 

  72. Doussan, C., Pagès, L. & Vercambre, G. Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption — model description. Ann. Bot. 81, 213–223 (1998).

    Article  Google Scholar 

  73. Couvreur, V., Vanderborght, J., Beff, L. & Javaux, M. Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models. Hydrol. Earth Syst. Sci. 18, 1723–1743 (2014).

    Article  Google Scholar 

  74. Vanderborght, J. et al. From hydraulic root architecture models to macroscopic representations of root hydraulics in soil water flow and land surface models. Hydrol. Earth Syst. Sci. 25, 4835–4860 (2021).

    Article  Google Scholar 

  75. de Jong van Lier, Q., van Dam, J. C., Durigon, A., dos Santos, M. A. & Metselaar, K. Modeling water potentials and flows in the soil–plant system comparing hydraulic resistances and transpiration reduction functions. Vadose Zone J. 12, vzj2013.02.0039 (2013).

    Article  Google Scholar 

  76. Carminati, A., Zarebanadkouki, M., Kroener, E., Ahmed, M. A. & Holz, M. Biophysical rhizosphere processes affecting root water uptake. Ann. Bot. 118, 561–571 (2016).

    Article  Google Scholar 

  77. Landl, M. et al. Modeling the impact of rhizosphere bulk density and mucilage gradients on root water uptake. Front. Agron. 3, 622367 (2021).

    Article  Google Scholar 

  78. Carminati, A. et al. Do roots mind the gap? Plant Soil 367, 651–661 (2013).

    Article  Google Scholar 

  79. Salmon, Y. et al. Drought impacts on tree phloem: from cell-level responses to ecological significance. Tree Physiol. 39, 173–191 (2019).

    Article  Google Scholar 

  80. Pandey, R., Vengavasi, K. & Hawkesford, M. J. Plant adaptation to nutrient stress. Plant Physiol. Rep. 26, 583–586 (2021).

    Article  Google Scholar 

  81. Fan, Y., Miguez-Macho, G., Jobbagy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    Article  Google Scholar 

  82. Rodriguez-Iturbe, I., D’Odorico, P., Porporato, A. & Ridolfi, L. On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour. Res. 35, 3709–3722 (1999).

    Article  Google Scholar 

  83. Rietkerk, M., Dekker, S. C., Ruiter, P. C. D. & Koppel, J. V. D. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    Article  Google Scholar 

  84. Porporato, A., Daly, E. & Rodriguez-Iturbe, I. Soil water balance and ecosystem response to climate change. Am. Nat. 164, 625–632 (2004).

    Article  Google Scholar 

  85. Budyko, M. I. Climate and Life (Academic, 1974).

  86. Laio, F., D’Odorico, P. & Ridolfi, L. An analytical model to relate the vertical root distribution to climate and soil properties. Geophys. Res. Lett. 33, L18401 (2006).

    Article  Google Scholar 

  87. Schenk, H. J. The shallowest possible water extraction profile: a null model for global root distributions. Vadose Zone J. 7, 1119–1124 (2008).

    Article  Google Scholar 

  88. Schenk, H. J. & Jackson, R. B. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126, 129–140 (2005).

    Article  Google Scholar 

  89. Assouline, S., Narkis, K., Gherabli, R., Lefort, P. & Prat, M. Analysis of the impact of surface layer properties on evaporation from porous systems using column experiments and modified definition of characteristic length. Water Resour. Res. 50, 3933–3955 (2014).

    Article  Google Scholar 

  90. Brunet, P., Clement, R. & Bouvier, C. Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)–A case study in the Cevennes area, France. J. Hydrol. 380, 146–153 (2010).

    Article  Google Scholar 

  91. Estrada-Medina, H., Graham, R. C., Allen, M. F., Jiménez-Osornio, J. J. & Robles-Casolco, S. The importance of limestone bedrock and dissolution karst features on tree root distribution in northern Yucatán, México. Plant Soil 362, 37–50 (2013).

    Article  Google Scholar 

  92. Sperry, J. S. & Hacke, U. G. Desert shrub water relations with respect to soil characteristics and plant functional type. Funct. Ecol. 16, 367–378 (2002).

    Article  Google Scholar 

  93. Brum, M. et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J. Ecol. 107, 318–333 (2019).

    Article  Google Scholar 

  94. Hildebrandt, A. in Forest-Water Interactions (eds Delphis, F. L. et al.) 319–348 (Springer, 2020).

  95. Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).

    Article  Google Scholar 

  96. Grossiord, C. Having the right neighbors: how tree species diversity modulates drought impacts on forests. New Phytol. 228, 42–49 (2020).

    Article  Google Scholar 

  97. Fisher, R. A. et al. Vegetation demographics in Earth System Models: A review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).

    Article  Google Scholar 

  98. Maxwell, R. M. & Kollet, S. J. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci. 1, 665–669 (2008).

    Article  Google Scholar 

  99. Lehmann, P., Assouline, S. & Or, D. Characteristic lengths affecting evaporative drying of porous media. Phys. Rev. E 77, 056309 (2008).

    Article  Google Scholar 

  100. Naumburg, E., Mata-gonzalez, R., Hunter, R. G., McLendon, T. & Martin, D. W. Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation. Environ. Manage. 35, 726–740 (2005).

    Article  Google Scholar 

  101. Stephens, C. M., Lall, U., Johnson, F. M. & Marshall, L. A. Landscape changes and their hydrologic effects: Interactions and feedbacks across scales. Earth Sci. Rev. 212, 103466 (2021).

    Article  Google Scholar 

  102. Roe, G. H., Feldl, N., Armour, K. C., Hwang, Y. T. & Frierson, D. M. W. The remote impacts of climate feedbacks on regional climate predictability. Nat. Geosci. 8, 135–139 (2015).

    Article  Google Scholar 

  103. Guillod, B. P., Orlowsky, B., Miralles, D. G., Teuling, A. J. & Seneviratne, S. I. Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun. 6, 6443 (2015).

    Article  Google Scholar 

  104. Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).

    Article  Google Scholar 

  105. Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2016).

    Article  Google Scholar 

  106. Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

    Article  Google Scholar 

  107. Stacke, T. & Hagemann, S. Lifetime of soil moisture perturbations in a coupled land-atmosphere simulation. Earth Syst. Dyn. 7, 1–19 (2016).

    Article  Google Scholar 

  108. Cheng, L. Y., Hoerling, M., Liu, Z. Y. & Eischeid, J. Physical understanding of human-induced changes in US hot droughts using equilibrium climate simulations. J. Clim. 32, 4431–4443 (2019).

    Article  Google Scholar 

  109. Zittis, G., Hadjinicolaou, P. & Lelieveld, J. Role of soil moisture in the amplification of climate warming in the eastern Mediterranean and the Middle East. Clim. Res. 59, 27–37 (2014).

    Article  Google Scholar 

  110. May, W. et al. Contributions of soil moisture interactions to climate change in the tropics in the GLACE-CMIP5 experiment. Clim. Dyn. 45, 3275–3297 (2015).

    Article  Google Scholar 

  111. Bloschl, G. et al. Increasing river floods: fiction or reality? Wiley Interdiscip. Rev. Water 2, 329–344 (2015).

    Article  Google Scholar 

  112. Pauw, P., de Louw, P. G. B. & Oude Essink, G. H. P. Groundwater salinisation in the Wadden Sea area of the Netherlands: quantifying the effects of climate change, sea-level rise and anthropogenic interferences. Neth. J. Geosci. 91, 373–383 (2012).

    Google Scholar 

  113. Bloschl, G. et al. The hydrological open air laboratory (HOAL) in Petzenkirchen: A hypothesis-driven observatory. Hydrol. Earth Syst. Sci. 20, 227–255 (2016).

    Article  Google Scholar 

  114. Rogger, M. et al. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resour. Res. 53, 5209–5219 (2017).

    Article  Google Scholar 

  115. Viglione, A. et al. Attribution of regional flood changes based on scaling fingerprints. Water Resour. Res. 52, 5322–5340 (2016).

    Article  Google Scholar 

  116. Zeng, H. et al. Drought-induced soil desiccation cracking behavior with consideration of basal friction and layer thickness. Water Resour. Res. 56, e2019WR026948 (2020).

    Article  Google Scholar 

  117. Hirmas, D. R. et al. Climate-induced changes in continental-scale soil macroporosity may intensify water cycle. Nature 561, 100–103 (2018).

    Article  Google Scholar 

  118. Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 650–659 (2018).

    Article  Google Scholar 

  119. Humphrey, V., Gudmundsson, L. & Seneviratne, S. I. Assessing global water storage variability from GRACE: trends, seasonal cycle, subseasonal anomalies and extremes. Surv. Geophys. 37, 357–395 (2016).

    Article  Google Scholar 

  120. Papa, F. & Frappart, F. Surface water storage in rivers and wetlands derived from satellite observations: a review of current advances and future opportunities for hydrological sciences. Remote Sens. 13, 4162 (2021).

    Article  Google Scholar 

  121. Chen, X., Alimohammadi, N. & Wang, D. B. Modeling interannual variability of seasonal evaporation and storage change based on the extended Budyko framework. Water Resour. Res. 49, 6067–6078 (2013).

    Article  Google Scholar 

  122. Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9, 358–369 (2019).

    Article  Google Scholar 

  123. Swenson, S., Famiglietti, J., Basara, J. & Wahr, J. Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data. Water Resour. Res. 44, W01413 (2008).

    Article  Google Scholar 

  124. Eicker, A., Forootan, E., Springer, A., Longuevergne, L. & Kusche, J. Does GRACE see the terrestrial water cycle “intensifying”? J. Geophys. Res. Atmos. 121, 733–745 (2016).

    Article  Google Scholar 

  125. Fasullo, J. T., Boening, C., Landerer, F. W. & Nerem, R. S. Australia’s unique influence on global sea level in 2010–2011. Geophys. Res. Lett. 40, 4368–4373 (2013).

    Article  Google Scholar 

  126. Jensen, L., Eicker, A., Dobslaw, H., Stacke, T. & Humphrey, V. Long-term wetting and drying trends in land water storage derived from GRACE and CMIP5 models. J. Geophys. Res. Atmos. 124, 9808–9823 (2019).

    Article  Google Scholar 

  127. Vereecken, H. et al. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 44, W00D06 (2008).

    Article  Google Scholar 

  128. Robinson, D. A., Jones, S. B., Wraith, J. M., Or, D. & Friedman, S. P. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J. 2, 444–475 (2003).

    Article  Google Scholar 

  129. Blonquist, J. M., Jones, S. B. & Robinson, D. A. A time domain transmission sensor with TDR performance characteristics. J. Hydrol. 314, 235–245 (2005).

    Article  Google Scholar 

  130. Kojima, Y. et al. Low-cost soil moisture profile probe using thin-film capacitors and a capacitive touch sensor. Sensors 16, 1292 (2016).

    Article  Google Scholar 

  131. Ojo, E. R. et al. Calibration and evaluation of a frequency domain reflectometry sensor for real-time soil moisture monitoring. Vadose Zone J. 14, 1–12 (2015).

    Article  Google Scholar 

  132. Campbell, G. S., Calissendorff, C. & Williams, J. H. Probe for measuring soil specific-heat using a heat-pulse method. Soil Sci. Soc. Am. J. 55, 291–293 (1991).

    Article  Google Scholar 

  133. Manfreda, S., Brocca, L., Moramarco, T., Melone, F. & Sheffield, J. A physically based approach for the estimation of root-zone soil moisture from surface measurements. Hydrol. Earth Syst. Sci. 18, 1199–1212 (2014).

    Article  Google Scholar 

  134. Han, X. J. et al. Joint assimilation of surface temperature and L-band microwave brightness temperature in land data assimilation. Vadose Zone J. 12, 1–16 (2013).

    Article  Google Scholar 

  135. Albergel, C. et al. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci. 12, 1323–1337 (2008).

    Article  Google Scholar 

  136. Zhang, N., Quiring, S., Ochsner, T. & Ford, T. Comparison of three methods for vertical extrapolation of soil moisture in Oklahoma. Vadose Zone J. 16, 1–19 (2017).

    Article  Google Scholar 

  137. Tian, J. et al. Estimation of subsurface soil moisture from surface soil moisture in cold mountainous areas. Hydrol. Earth Syst. Sci. 24, 4659–4674 (2020).

    Article  Google Scholar 

  138. Bogena, H. R. et al. Emerging methods for noninvasive sensing of soil moisture dynamics from field to catchment scale: A review. Wiley Interdiscip. Rev. Water 2, 635–647 (2015).

    Article  Google Scholar 

  139. Wagner, W. et al. The ASCAT soil moisture product: a review of its specifications, validation results, and emerging applications. Meteorol. Z. 22, 1–29 (2013).

    Article  Google Scholar 

  140. Bartalis, Z. et al. Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett. 34, L20401 (2007).

    Article  Google Scholar 

  141. Parinussa, R. M., Holmes, T. R. H., Wanders, N., Dorigo, W. A. & de Jeu, R. A. M. A preliminary study toward consistent soil moisture from AMSR2. J. Hydrometeorol. 16, 932–947 (2015).

    Article  Google Scholar 

  142. Babaeian, E. et al. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 57, 530–616 (2019).

    Article  Google Scholar 

  143. Fang, B., Lakshmi, V., Bindlish, R. & Jackson, T. J. Downscaling of SMAP soil moisture using land surface temperature and vegetation data. Vadose Zone J. 17, 1–15 (2018).

    Article  Google Scholar 

  144. Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).

    Article  Google Scholar 

  145. Bauer-Marschallingere, B. et al. Toward global soil moisture monitoring with Sentinel-1: Harnessing assets and overcoming obstacles. IEEE Trans. Geosci. Remote Sens. 57, 520–539 (2019).

    Article  Google Scholar 

  146. Izumi, Y. et al. Potential of soil moisture retrieval for tropical peatlands in Indonesia using ALOS-2 L-band full-polarimetric SAR data. Int. J. Remote Sens. 40, 5938–5956 (2019).

    Article  Google Scholar 

  147. Kim, S. B. & Liao, T. H. Robust retrieval of soil moisture at field scale across wide-ranging SAR incidence angles for soybean, wheat, forage, oat and grass. Remote Sens. Environ. 266, 112712 (2021).

    Article  Google Scholar 

  148. Davidson, M., Gebert, N. & Giulicchi, L. in EUSAR 2021; 13th European Conference on Synthetic Aperture Radar 1-2 (IEEE, 2021).

  149. Tabatabaeenejad, A. et al. Assessment and validation of AirMOSS P-band root-zone soil moisture products. IEEE Trans. Geosci. Remote Sens. 58, 6181–6196 (2020).

    Article  Google Scholar 

  150. Garrison, J. L. et al. in 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 164–167 (IEEE, 2021).

  151. Vey, S., Guntner, A., Wickert, J., Blume, T. & Ramatschi, M. Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa. GPS Solut. 20, 641–654 (2016).

    Article  Google Scholar 

  152. Camps, A. et al. Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9, 4730–4742 (2016).

    Article  Google Scholar 

  153. Peters, D. P. C., Loescher, H. W., SanClements, M. D. & Havstad, K. M. Taking the pulse of a continent: expanding site-based research infrastructure for regional- to continental-scale ecology. Ecosphere 5, 1–23 (2014).

    Article  Google Scholar 

  154. Bogena, H. R. et al. The TERENO-Rur hydrological observatory: A multiscale multi-compartment research platform for the advancement of hydrological science. Vadose Zone J. 17, 1–22 (2018).

    Article  Google Scholar 

  155. Tetzlaff, D., Carey, S. K., McNamara, J. P., Laudon, H. & Soulsby, C. The essential value of long-term experimental data for hydrology and water management. Water Resour. Res. 53, 2598–2604 (2017).

    Article  Google Scholar 

  156. Brantley, S. L. et al. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth. Earth Surf. Dyn. 5, 841–860 (2017).

    Article  Google Scholar 

  157. Cosh, M. H. et al. Developing a strategy for the national coordinated soil moisture monitoring network. Vadose Zone J. 20, e20139 (2021).

    Article  Google Scholar 

  158. White, T. et al. in Developments in Earth Surface Processes Vol. 19 (eds John, R. G. & Chris, H.) 15–78 (Elsevier, 2015).

  159. Loescher, H. W., Kelly, E. F. & Russ, L. in Terrestrial Ecosystem Research Infrastructures: Challenges and Opportunities (eds Chabbi, A. & Henry, W. L.) Ch. 2 (CRC Press, Taylor & Francis Group, 2017).

  160. Zacharias, S. et al. A network of terrestrial environmental observatories in Germany. Vadose Zone J. 10, 955–973 (2011).

    Article  Google Scholar 

  161. Thurgate, N., Lower, A. J. & Clancy, T. F. in Terrestrial Ecosystem Research Infrastructures: Challenges, New developments and Perspectives (eds Chabbi, A. & Loescher H.) Ch. 16 (CRC Press, Taylor & Francis Group, 2017).

  162. Dorigo, W. et al. The International Soil Moisture Network: serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 25, 5749–5804 (2021).

    Article  Google Scholar 

  163. Silvertown, J. A new dawn for citizen science. Trends Ecol. Evol. 24, 467–471 (2009).

    Article  Google Scholar 

  164. Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Front. Ecol. Environ. 10, 291–297 (2012).

    Article  Google Scholar 

  165. Gura, T. Citizen science: amateur experts. Nature 496, 259–261 (2013).

    Article  Google Scholar 

  166. Buytaert, W. et al. Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. Front. Earth Sci. 2, 22 (2014).

    Article  Google Scholar 

  167. Kovács, K. Z. et al. Citizen observatory based soil moisture monitoring–the GROW example. Hungarian Geogr. Bull. 68, 119–139 (2019).

    Article  Google Scholar 

  168. Koch, J. & Stisen, S. Citizen science: A new perspective to advance spatial pattern evaluation in hydrology. PLoS One 12, e0178165 (2017).

    Article  Google Scholar 

  169. Li, X. et al. Boosting geoscience data sharing in China. Nat. Geosci. 14, 541–542 (2021).

    Article  Google Scholar 

  170. Cheng, K., Quan, S. & Yan, J. in 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD) 855–860 (IEEE, 2021).

  171. Atzori, L., Iera, A. & Morabito, G. Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Netw. 56, 122–140 (2017).

    Article  Google Scholar 

  172. Wang, J. Y., Wang, X. Z. & Wu, Q. Core network service model and networking scheme oriented NB-IoT. Telecommun. Sci. 33, 148–154 (2017).

    Google Scholar 

  173. McCabe, M. F. et al. The future of Earth observation in hydrology. Hydrol. Earth Syst. Sci. 21, 3879–3914 (2017).

    Article  Google Scholar 

  174. Gomes, V. C. F., Queiroz, G. R. & Ferreira, K. R. An overview of platforms for big earth observation data management and analysis. Remote Sens. 12, 1253 (2020).

    Article  Google Scholar 

  175. Shah, J. & Dubaria, D. in 9th IEEE Annual Computing and Communication Workshop and Conference (CCWC) 184–189 (IEEE, 2019).

  176. Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).

    Article  Google Scholar 

  177. Searle, R. et al. Digital soil mapping and assessment for Australia and beyond: A propitious future. Geoderma Reg. 24, e00359 (2021).

    Article  Google Scholar 

  178. Jiang, H. L. & Cotton, W. R. Soil moisture estimation using an artificial neural network: a feasibility study. Can. J. Remote Sens. 30, 827–839 (2004).

    Article  Google Scholar 

  179. Yu, Z. B. et al. A multi-layer soil moisture data assimilation using support vector machines and ensemble particle filter. J. Hydrol. 475, 53–64 (2012).

    Article  Google Scholar 

  180. Ahmad, S., Kalra, A. & Stephen, H. Estimating soil moisture using remote sensing data: a machine learning approach. Adv. Water Resour. 33, 69–80 (2010).

    Article  Google Scholar 

  181. Schonbrodt-Stitt, S. et al. Statistical exploration of Sentinel-1 data, terrain parameters, and in-situ data for estimating the near-surface soil moisture in a Mediterranean agroecosystem. Front. Water 3, 655837 (2021).

    Article  Google Scholar 

  182. Karandish, F. & Simunek, J. A comparison of numerical and machine-learning modeling of soil water content with limited input data. J. Hydrol. 543, 892–909 (2016).

    Article  Google Scholar 

  183. Arrouays, D. et al. in Advances in Agronomy Vol. 125 (ed. Sparks, D. L.) 93–134 (Academic, 2014).

  184. Enescu, I. I. et al. Hypercube-based visualization architecture for web-based environmental geospatial information systems. Cartogr. J. 52, 137–148 (2015).

    Article  Google Scholar 

  185. Yao, X. C. et al. Enabling the big earth observation data via cloud computing and DGGS: Opportunities and challenges. Remote Sens. 12, 62 (2020).

    Article  Google Scholar 

  186. Durner, W. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 30, 211–223 (1994).

    Article  Google Scholar 

  187. Li, Y. & Vanapalli, S. K. A novel modeling method for the bimodal soil-water characteristic curve. Comput. Geotech. 138, 104318 (2021).

    Article  Google Scholar 

  188. Lu, N. & Dong, Y. Closed-form equation for thermal conductivity of unsaturated soils at room temperature. J. Geotech. Geoenviron. Eng. 141, 04015016 (2015).

    Article  Google Scholar 

  189. He, H. L., Dyck, M. & Lv, J. L. A new model for predicting soil thermal conductivity from matric potential. J. Hydrol. 589, 125167 (2020).

    Article  Google Scholar 

  190. Jana, R. B. & Mohanty, B. P. Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation. J. Hydrol. 399, 201–211 (2011).

    Article  Google Scholar 

  191. Jana, R. B., Mohanty, B. P. & Springer, E. P. Multiscale Bayesian neural networks for soil water content estimation. Water Resour. Res. 44, W08408 (2008).

    Article  Google Scholar 

  192. Guber, A. K. et al. Multimodel simulation of water flow in a field soil using pedotransfer functions. Vadose Zone J. 8, 1–10 (2009).

    Article  Google Scholar 

  193. Zhang, Y. G., Schaap, M. G. & Wei, Z. W. Development of hierarchical ensemble model and estimates of soil water retention with global coverage. Geophys. Res. Lett. 47, e2020GL088819 (2020).

    Google Scholar 

  194. Dai, Y. J. et al. A global high-resolution data set of soil hydraulic and thermal properties for land surface modeling. J. Adv. Model. Earth Syst. 11, 2996–3023 (2019).

    Article  Google Scholar 

  195. Hodnett, M. G. & Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108, 155–180 (2002).

    Article  Google Scholar 

  196. Ottoni, M. V., Ottoni, T. B., Schaap, M. G., Lopes-Assad, M. & Rotunno, O. C. Hydrophysical database for Brazilian soils (HYBRAS) and pedotransfer functions for water retention. Vadose Zone J. 17, 1–17 (2018).

    Article  Google Scholar 

  197. Jarvis, N., Koestel, J., Messing, I., Moeys, J. & Lindahl, A. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 17, 5185–5195 (2013).

    Article  Google Scholar 

  198. Minasny, B. & Hartemink, A. E. Predicting soil properties in the tropics. Earth Sci. Rev. 106, 52–62 (2011).

    Article  Google Scholar 

  199. Apers, S. et al. Tropical peatland hydrology simulated with a global land surface model. J. Adv. Model. Earth Syst. 14, e2021MS002784 (2022).

    Article  Google Scholar 

  200. Bechtold, M. et al. Improved groundwater table and L-band brightness temperature estimates for Northern Hemisphere peatlands using new model physics and SMOS observations in a global data assimilation framework. Remote Sens. Environ. 246, 111805 (2020).

    Article  Google Scholar 

  201. Rasanen, A. et al. Detecting northern peatland vegetation patterns at ultra-high spatial resolution. Remote Sens. Ecol. Conserv. 6, 457–471 (2020).

    Article  Google Scholar 

  202. Selker, J. & Or, D. Soil Hydrology and Biophysics (Oregon State Univ., 2019).

  203. Zhang, X. et al. Geospatial sensor web: a cyber-physical infrastructure for geoscience research and application. Earth Sci. Rev. 185, 684–703 (2018).

    Article  Google Scholar 

  204. Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 5427 (2020).

    Article  Google Scholar 

  205. Baatz, R. et al. Reanalysis in Earth system science: Toward terrestrial ecosystem reanalysis. Rev. Geophys. 59, e2020RG000715 (2021).

    Article  Google Scholar 

  206. Mahdavi-Amiri, A., Harrison, E. & Samavati, F. Hexagonal connectivity maps for Digital Earth. Int. J. Digit. Earth 8, 750–769 (2015).

    Article  Google Scholar 

  207. Bowater, D. & Stefanakis, E. An open-source web service for creating quadrilateral grids based on the rHEALPix Discrete Global Grid System. Int. J. Digit. Earth 13, 1055–1071 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

W.A., N.B., C.M., J.V. and H.V. acknowledge support from the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy, EXC-2070 - 390732324 (PhenoRob). W.A., H.B., N.B., C.M., J.V. and H.V. acknowledge support from the Terrestrial Environmental Observatories (TERENO) funded by the Helmholtz-Gemeinschaft, Germany. The authors were also supported by the Deutsche Forschungsgemeinschaft – SFB 1502/1-2022 - Projektnummer 450058266.

Author information

Authors and Affiliations

Authors

Contributions

H.V., W.A., S.L.B., H.B., N.B., C.M. and J.V. led the conceptualization, writing and figure drafting. D.O., M.B., G.B., A.C., A.G.K., J.K., I.N., S.S.-D., A.V., M.Y. and Y.Z. supported in equal parts the conceptualization, writing and figure drafting.

Corresponding author

Correspondence to Harry Vereecken.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Jan Hopmans, Carlos Rogerio de Mello and Qing Zhu for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vereecken, H., Amelung, W., Bauke, S.L. et al. Soil hydrology in the Earth system. Nat Rev Earth Environ 3, 573–587 (2022). https://doi.org/10.1038/s43017-022-00324-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00324-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing