Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Twenty-five years of analogue quantum simulation

A theoretical proposal published in 1998 spurred research into analogue quantum simulation, a field that has brought different physics subdisciplines, theorists and experimentalists together, creating a new community.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Bose–Hubbard model and analogue quantum simulation.

References

  1. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998).

    Article  ADS  Google Scholar 

  2. Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).

    Article  ADS  Google Scholar 

  3. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  4. Bloch, I. & Greiner, M. The superfluid-to-Mott insulator transition and the birth of experimental quantum simulation. Nat. Rev. Phys. 4, 739–740 (2022).

    Article  Google Scholar 

  5. Monroe, C. Shaping atoms in optical lattices. Nature 388, 719–720 (1997).

    Article  ADS  Google Scholar 

  6. DeMarco, B. & Jin, D. S. Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703 (1999).

    Article  Google Scholar 

  7. Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004).

    Article  ADS  Google Scholar 

  8. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  Google Scholar 

  9. Bauer, C. W. et al. Quantum simulation of fundamental particles and forces. Nat. Rev. Phys. 5, 420–432 (2023).

    Article  Google Scholar 

  10. Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Daley.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daley, A.J. Twenty-five years of analogue quantum simulation. Nat Rev Phys 5, 702–703 (2023). https://doi.org/10.1038/s42254-023-00666-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00666-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing