Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Controlling complex networks with complex nodes

Abstract

Real-world networks often consist of millions of heterogenous elements that interact at multiple timescales and length scales. The fields of statistical physics and control theory both contribute different perspectives for understanding, modelling and controlling these systems. To address real-world systems, more interaction between these fields and integration of new paradigms such as heterogeneity and multiple levels of representation will be necessary. It may be possible to expand models from statistical physics to integrate the notion of feedback (both positive and negative) and to extend control theory formulations to more mesoscopic analysis over averages of collections of degrees of freedom. There is also the need to integrate theoretical models, machine learning and data-driven control methods. We review recent progress and identify opportunities to help advance understanding and control of real-world systems from oscillator networks and social networks to biological and technological networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common elements found in complex networks.
Fig. 2: Identification of driver nodes and phase transition in the structural control framework.
Fig. 3: Control paradigms.
Fig. 4: Closing the feedback loop in complex networks entails sensing, computing and actuating at different scales.
Fig. 5: Main stages of a classical closed-loop controller design.

Similar content being viewed by others

References

  1. National Research Council. Network Science (The National Academies Press, 2005).

  2. Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2018).

  3. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks. Nature 473, 167–173 (2011).

    Article  ADS  Google Scholar 

  4. Lin, C.-T. Structural controllability. IEEE Trans. Autom. Control. 19, 201 (1974).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Liu, Y. Y., Csoka, E., Zhou, H. & Posfai, M. Core percolation on complex networks. Phys. Rev. Lett. 109, 205703 (2012).

    Article  ADS  Google Scholar 

  6. Jia, T. et al. Emergence of bimodality in controlling complex networks. Nat. Commun. 4, 2002 (2013).

    Article  ADS  Google Scholar 

  7. Sun, J. & Motter, A. E. Controllability transition and nonlocality in network control. Phys. Rev. Lett. 110, 208701 (2013).

    Article  ADS  Google Scholar 

  8. Yan, G., Ren, J., Lai, Y.-C., Lai, C.-H. & Li, B. Controlling complex networks — how much energy is needed? Phys. Rev. Lett. 108, 218703 (2012).

    Article  ADS  Google Scholar 

  9. Ruths, J. & Ruths, D. Control profiles of complex networks. Science 343, 1373–1376 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Motter, A. E. Networkcontrology. Chaos 25, 097621 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  11. Liu, Y.-Y. & Barabási, A.-L. Control principles of complex systems. Rev. Mod. Phys. 88, 053006 (2016).

    Article  Google Scholar 

  12. Xiang, L., Chen, F., Ren, W. & Chen, G. Advances in network controllability. IEEE Circuits Syst. Mag. 19, 8–32 (2019).

    Article  Google Scholar 

  13. Bechhoefer, J. Control Theory for Physicists (Cambridge Univ. Press, 2021).

  14. Åström, K. J. & Murray, R. M. Feedback Systems: An Introduction for Scientists and Engineers 2nd edn (Princeton Univ. Press, 2021).

  15. Khalil, H. K. Nonlinear Systems (Prentice Hall, 2002).

  16. Siljak, D. D. Large-scale Dynamic Systems: Stability and Structure (North-Holland, 1978).

  17. Bullo, F. Lectures on Network Systems 1.6 edn (Kindle Direct Publishing, 2022).

  18. Li, X., Wang, X. & Chen, G. Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Syst. 51, 2074–2087 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, X. & Chen, G. Pinning control of scale-free dynamical networks. Phys. A Stat. Mech. Appl. 310, 521–531 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  20. Sorrentino, F., di Bernardo, M., Garofalo, F. & Chen, G. Controllability of complex networks via pinning. Phys. Rev. E 75, 046103 (2007).

    Article  ADS  Google Scholar 

  21. Su, H. & Wang, X. Pinning Control of Complex Networked Systems 1st edn (Springer, 2013).

  22. Moreau, L. Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50, 169–182 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  23. Cisneros-Velarde, P., Jafarpour, S. & Bullo, F. Contraction theory for dynamical systems on Hilbert spaces. IEEE Trans. Autom. Control 67, 6710–6715 (2021).

    Article  MathSciNet  Google Scholar 

  24. Murray, R. M. Control in an Information Rich World (Society for Industrial and Applied Mathematics, 2003).

  25. Lamnabhi-Lagarrigue, F. et al. Systems and control for the future of humanity, research agenda: current and future roles, impact and grand challenges. Annu. Rev. Control 43, 1–64 (2017).

    Article  Google Scholar 

  26. Matheny Matthew, H. et al. Exotic states in a simple network of nanoelectromechanical oscillators. Science 363, eaav7932 (2019).

    Article  MathSciNet  Google Scholar 

  27. Salova, A. & D’Souza, R. M. Decoupled synchronized states in networks of linearly coupled limit cycle oscillators. Phys. Rev. Res. 2, 043261 (2020).

    Article  Google Scholar 

  28. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275 (2008).

    Article  ADS  Google Scholar 

  30. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Albert, R. & Barabási, A.-L. Topology of evolving networks: local events and universality. Phys. Rev. Lett. 85, 5234–5237 (2000).

    Article  ADS  Google Scholar 

  32. Dorogovtsev, S. N., Mendes, J. F. F. & Samukhin, A. N. Structure of growing networks with preferential linking. Phys. Rev. Lett. 85, 4633–4636 (2000).

    Article  ADS  Google Scholar 

  33. Krapivsky, P. L., Redner, S. & Leyvraz, F. Connectivity of growing random networks. Phys. Rev. Lett. 85, 4629–4632 (2000).

    Article  ADS  Google Scholar 

  34. Stanley, H. E. Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, 1971).

  35. Erdős, P. & Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hungarian Acad. Sci. 5, 17–61 (1960).

    MathSciNet  MATH  Google Scholar 

  36. Newman, M. E. J., Strogatz, S. H. & Watts, D. J. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001).

    Article  ADS  Google Scholar 

  37. Callaway, D. S., Newman, M. E. J., Strogatz, S. H. & Watts, D. J. Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000).

    Article  ADS  Google Scholar 

  38. Achlioptas, D., D’Souza, R. M. & Spencer, J. Explosive percolation in random networks. Science 323, 1453–1455 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. D’Souza, R. M., Gómez-Gardeñes, J., Nagler, J. & Arenas, A. Explosive phenomena in complex networks. Adv. Phys. 68, 123–223 (2019).

    Article  ADS  Google Scholar 

  40. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  ADS  Google Scholar 

  41. Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9, 2527–2539 (2012).

    Article  Google Scholar 

  42. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).

    Article  ADS  Google Scholar 

  43. D’Souza, R. M. Curtailing cascading failures. Science 358, 860–861 (2017).

    Article  ADS  Google Scholar 

  44. Cajueiro, D. O. & Andrade, R. F. Controlling self-organized criticality in sandpile models. Phys. Rev. E 81, 015102 (2010).

    Article  ADS  Google Scholar 

  45. Cajueiro, D. O. & Andrade, R. F. Dynamical programming approach for controlling the directed Abelian Dhar–Ramaswamy model. Phys. Rev. E 82, 031108 (2010).

    Article  ADS  Google Scholar 

  46. Noël, P.-A., Brummitt, C. D. & D’Souza, R. M. Controlling self-organizing dynamics on networks using models that self-organize. Phys. Rev. Lett. 111, 078701 (2013).

    Article  ADS  Google Scholar 

  47. Qi, J. & Pfenninger, S. Controlling the self-organizing dynamics in a sandpile model on complex networks by failure tolerance. EPL 111, 38006 (2015).

    Article  ADS  Google Scholar 

  48. Sornette, D. Dragon-kings, black swans and the prediction of crises. CCSS Working Paper No. CCSS-09-005 (2009).

  49. Cavalcante, H. L., Oria, M., Sornette, D., Ott, E. & Gauthier, D. J. Predictability and suppression of extreme events in a chaotic system. Phys. Rev. Lett. 111, 198701 (2013).

    Article  ADS  Google Scholar 

  50. Lin, Y., Burghardt, K., Rohden, M., Noël, P.-A. & D’Souza, R. M. Self-organization of dragon king failures. Phys. Rev. E 98, 022127 (2018).

    Article  ADS  Google Scholar 

  51. Mikaberidze, G. & D’Souza, R. M. Sandpile cascades on oscillator networks: the BTW model meets Kuramoto. Chaos 32, 053121 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  52. Yamada, T. & Foulds, L. R. A graph-theoretic approach to investigate structural and qualitative properties of systems: a survey. Networks 20, 427 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  53. Commault, C., Dion, J. M. & Van Der Woude, J. W. Characterization of generic properties of linear structured systems for efficient computations. Kybernetika 38, 503–520 (2002).

    MathSciNet  MATH  Google Scholar 

  54. Murota, K. Matrices and Matroids for Systems Analysis (Springer, 2009).

  55. Mézard, M. & Parisi, G. The Bethe lattice spin glass revisited. Eur. Phys. J. B 20, 217 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  56. Mézard, M. & Parisi, G. The cavity method at zero temperature. J. Stat. Phys. https://doi.org/10.1023/A:1022221005097 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  57. Mezard, M., Parisi, G. & Virasoro, M. Spin Glass Theory and Beyond Vol. 9 (World Scientific, 1986).

  58. Zdeborová, L. & Mézard, M. The number of matchings in random graphs. J. Stat. Mech. Theory Exp. 05, P05003 (2006).

    MathSciNet  MATH  Google Scholar 

  59. Yang, Y., Wang, J. & Motter, A. Network observability transitions. Phys. Rev. Lett. 109, 258701 (2012).

    Article  ADS  Google Scholar 

  60. Zhao, J.-H, Habibulla, Y. & Zhou, H.-J. Statistical mechanics of the minimum dominating set problem. J. Stat. Phys. 159, 1154–1174 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Wigner, E. P. Random matrices in physics. SIAM Rev. 9, 1–23 (1967).

    Article  ADS  MATH  Google Scholar 

  62. Gates, A. J. & Rocha, L. M. Control of complex networks requires both structure and dynamics. Sci. Rep. 6, 24456 (2016).

    Article  ADS  Google Scholar 

  63. Olfati-Saber, R. & Murray, R. M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control. 49, 1520–1533 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  64. Paley, D. A., Leonard, N. E., Sepulchre, R., Grunbaum, D. & Parrish, J. K. Oscillator models and collective motion. IEEE Control. Syst. Mag. 27, 89–105 (2007).

    Article  Google Scholar 

  65. Jadbabaie, A., Lin, J. & Morse, A. S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control. 48, 988–1001 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  66. Tanner, H. G., Jadbabaie, A. & Pappas, G. J. Flocking in fixed and switching networks. IEEE Trans. Autom. Control. 52, 863–868 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  67. Leonard, N. E. & Fiorelli, E. Proc. 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) (IEEE, 2001).

  68. Olfati-Saber, R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51, 401–420 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  69. Olfati-Saber, R., Fax, J. A. & Murray, R. M. Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95, 215–233 (2007).

    Article  MATH  Google Scholar 

  70. Wei, R. & Beard, R. W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50, 655–661 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  71. Sepulchre, R. Consensus on nonlinear spaces. Annu. Rev. Control 35, 56–64 (2011).

    Article  Google Scholar 

  72. DeLellis, P., diBernardo, M. & Garofalo, F. Novel decentralized adaptive strategies for the synchronization of complex networks. Automatica 45, 1312–1318 (2009).

    Article  MathSciNet  Google Scholar 

  73. Dorfler, F., Chertkov, M. & Bullo, F. Synchronization in complex oscillator networks and smart grids. Proc. Natl Acad. Sci. USA 110, 2005–2010 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Scardovi, L. & Sepulchre, R. 2008 47th IEEE Conference on Decision and Control 546–551 (IEEE, 2008).

  75. Wieland, P., Sepulchre, R. & Allgöwer, F. An internal model principle is necessary and sufficient for linear output synchronization. Automatica 47, 1068–1074 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  76. Andrea, R. D. & Dullerud, G. E. Distributed control design for spatially interconnected systems. IEEE Trans. Autom. Control 48, 1478–1495 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  77. Bullo, F., Cortés, J. & Martínez, S. Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms (Princeton Univ. Press, 2009).

  78. Shamma, J. S. (ed.) Cooperative Control of Distributed Multi-agent Systems (John Wiley & Sons, Ltd, 2007).

  79. Oh, K.-K., Park, M.-C. & Ahn, H.-S. A survey of multi-agent formation control. Automatica 53, 424–440 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  80. Kumar, V., Leonard, N. & Morse, A. S. Cooperative Control (Springer Berlin, 2005).

  81. Porfiri, M. & di Bernardo, M. Criteria for global pinning-controllability of complex networks. Automatica 44, 3100–3106 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  82. Mesbahi, M. & Egerstedt, M. Graph Theoretic Methods in Multiagent Networks (Princeton Univ. Press, 2010).

  83. Mesbahi, M. On state-dependent dynamic graphs and their controllability properties. IEEE Trans. Autom. Control 50, 387–392 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  84. Rahmani, A., Ji, M., Mesbahi, M. & Egerstedt, M. Controllability of multi-agent systems from a graph-theoretic perspective. SIAM J. Control Optim. 48, 162–186 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  85. Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability metrics, limitations and algorithms for complex networks. IEEE Trans. Control Netw. Syst. 1, 40–52 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  86. Bianchin, G., Frasca, P., Gasparri, A. & Pasqualetti, F. The observability radius of networks. IEEE Trans. Autom. Control 62, 3006–3013 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  87. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Observability of complex systems. Proc. Natl Acad. Sci. USA 110, 2460–2465 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. Sundaram, S. & Hadjicostis, C. N. Structural controllability and observability of linear systems over finite fields with applications to multi-agent systems. IEEE Trans. Autom. Control 58, 60–73 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  89. Harary, F., Norman, R. Z. & Cartwright, D. Structural Models: An Introduction to the Theory of Directed Graphs (John Wiley & Sons, 1965).

  90. Xiang, J. & Chen, G. On the V-stability of complex dynamical networks. Automatica 43, 1049–1057 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  91. Arcak, M. Passivity as a design tool for group coordination. IEEE Trans. Autom. Control 52, 1380–1390 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  92. Slotine, J.-J. E. & Wang, W. in Cooperative Control: A Post-Workshop Volume 2003 Block Island Workshop on Cooperative Control (eds Kumar, V., Leonard, N. & Morse, A. S.) 207–228 (Springer, 2005).

  93. Forni, F. & Sepulchre, R. A differential Lyapunov framework for contraction analysis. IEEE Trans. Autom. Control 59, 614–628 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  94. Moylan, P. & Hill, D. Stability criteria for large-scale systems. IEEE Trans. Autom. Control 23, 143–149 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  95. di Bernardo, M., Fiore, D., Russo, G. & Scafuti, F. in Complex Systems and Networks: Dynamics, Controls and Applications (eds Lü, J., Yu, X., Chen, G. & Yu, W.) 313–339 (Springer, 2016).

  96. Pecora, L. M. & Carroll, T. L. Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998).

    Article  ADS  Google Scholar 

  97. Baggio, G., Bassett, D. S. & Pasqualetti, F. Data-driven control of complex networks. Nat. Commun. 12, 1429 (2021).

    Article  ADS  Google Scholar 

  98. Nguyen, T. T., Nguyen, N. D. & Nahavandi, S. Deep reinforcement learning for multiagent systems: a review of challenges, solutions, and applications. IEEE Trans. Cybern. 50, 3826–3839 (2020).

    Article  Google Scholar 

  99. Battistelli, G. & Chisci, L. Kullback–Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability. Automatica 50, 707–718 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  100. Dibaji, S. M., Ishii, H. & Tempo, R. Resilient randomized quantized consensus. IEEE Trans. Autom. Control 63, 2508–2522 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  101. Fiore, D. & Russo, G. Resilient consensus for multi-agent systems subject to differential privacy requirements. Automatica 106, 18–26 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  102. Nozari, E., Tallapragada, P. & Cortés, J. Differentially private distributed convex optimization via functional perturbation. IEEE Trans. Control Netw. Syst. 5, 395–408 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  103. Mo, Y. & Murray, R. M. Privacy preserving average consensus. IEEE Trans. Autom. Control 62, 753–765 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  104. Xie, S., Russo, G. & Middleton, R. H. Scalability in nonlinear network systems affected by delays and disturbances. IEEE Trans. Control Netw. Syst. 8, 1128–1138 (2021).

    Article  MathSciNet  Google Scholar 

  105. Stüdli, S., Seron, M. M. & Middleton, R. H. From vehicular platoons to general networked systems: string stability and related concepts. Annu. Rev. Control 44, 157–172 (2017).

    Article  Google Scholar 

  106. Russo, G., Wirth, F. & Shorten, R. On synchronization in continuous-time networks of nonlinear nodes with state-dependent and degenerate noise diffusion. IEEE Trans. Autom. Control 64, 389–395 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  107. Li, T., Wu, F. & Zhang, J. Multi-agent consensus with relative-state-dependent measurement noises. IEEE Trans. Autom. Control 59, 2463–2468 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  108. Burbano-L, D. A., Russo, G. & Bernardo, M. D. Pinning controllability of complex network systems with noise. IEEE Trans. Control Netw. Syst. 6, 874–883 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  109. Della Rossa, F. & De Lellis, P. Synchronization and pinning control of stochastic coevolving networks. Annu. Rev. Control 53, 147–160 (2022).

    Article  MathSciNet  Google Scholar 

  110. Ott, E., Grebogi, C. & Yorke, J. A. Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. Ditto, W. L., Rauseo, S. N. & Spano, M. L. Experimental control of chaos. Phys. Rev. Lett. 65, 3211–3214 (1990).

    Article  ADS  Google Scholar 

  112. Shinbrot, T., Grebogi, C., Ott, E. & Yorke, J. A. Using small perturbations to control chaos. Nature 363, 411 (1993).

    Article  ADS  Google Scholar 

  113. Boccaletti, S., Grebogi, C., Lai, Y.-C., Mancini, H. & Maza, D. The control of chaos: theory and applications. Phys. Rep. 329, 103–197 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  114. Cornelius, S. P., Kath, W. L. & Motter, A. E. Realistic control of network dynamics. Nat. Commun. 4, 1942 (2013).

    Article  ADS  Google Scholar 

  115. Bick, C. & Martens, E. A. Controlling chimeras. New J. Phys. 17, 033030 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. Kuramoto, Y. & Davaasambuu, B. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlin. Phenom. Complex Syst. 5, 380–385 (2002).

    Google Scholar 

  117. Abrams, D. M. & Strogatz, S. H. Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004).

    Article  ADS  Google Scholar 

  118. Sieber, J., Omel’chenko, O. E. & Wolfrum, M. Controlling unstable chaos: stabilizing chimera states by feedback. Phys. Rev. Lett. 112, 054102 (2014).

    Article  ADS  Google Scholar 

  119. Gjurchinovski, A., Scholl, E. & Zakharova, A. Control of amplitude chimeras by time delay in oscillator networks. Phys. Rev. E 95, 042218 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  120. Zakharova, A., Semenova, N., Anishchenko, V. & Schöll, E. Time-delayed feedback control of coherence resonance chimeras. Chaos 27, 114320 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. Gambuzza, L. V. & Frasca, M. Pinning control of chimera states. Phys. Rev. E 94, 022306 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  122. Semenov, V., Zakharova, A., Maistrenko, Y. & Schöll, E. Delayed-feedback chimera states: forced multiclusters and stochastic resonance. EPL 115, 10005 (2016).

    Article  ADS  Google Scholar 

  123. Bera, B. K., Majhi, S., Ghosh, D. & Perc, M. Chimera states: effects of different coupling topologies. EPL 118, 10001 (2017).

    Article  ADS  Google Scholar 

  124. Ruzzene, G., Omelchenko, I., Schöll, E., Zakharova, A. & Andrzejak, R. G. Controlling chimera states via minimal coupling modification. Chaos 29, 051103 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. Omelchenko, I., Hülser, T., Zakharova, A. & Schöll, E. Control of chimera states in multilayer networks. Front. Appl. Math. Stat. 4, 00067 (2019).

    Article  Google Scholar 

  126. Schöll, E., Klapp, S. H. L. & Hövel, P. Control of Self-organizing Nonlinear Systems (Springer, 2016).

  127. Ljung, L. System Identification: Theory for User (Prentice Hall, 1999).

  128. Xue, Y. & Bogdan, P. Reconstructing missing complex networks against adversarial interventions. Nat. Commun. 10, 1738 (2019).

    Article  ADS  Google Scholar 

  129. Timme, M. Revealing network connectivity from response dynamics. Phys. Rev. Lett. 98, 224101 (2007).

    Article  ADS  Google Scholar 

  130. Battiston, F. et al. The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021).

    Article  Google Scholar 

  131. Bianconi, G. Higher-Order Networks (Cambridge Univ. Press, 2021).

  132. Ghoshal, G., Zlatic, V., Caldarelli, G. & Newman, M. E. Random hypergraphs and their applications. Phys. Rev. E 79, 066118 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  133. Courtney, O. T. & Bianconi, G. Generalized network structures: the configuration model and the canonical ensemble of simplicial complexes. Phys. Rev. E 93, 062311 (2016).

    Article  ADS  Google Scholar 

  134. Lucas, M., Cencetti, G. & Battiston, F. Multiorder Laplacian for synchronization in higher-order networks. Phys. Rev. Res. 2, 033410 (2020).

    Article  Google Scholar 

  135. Gambuzza, L. V. et al. Stability of synchronization in simplicial complexes. Nat. Commun. 12, 1255 (2021).

    Article  ADS  Google Scholar 

  136. Ferraz de Arruda, G., Tizzani, M. & Moreno, Y. Phase transitions and stability of dynamical processes on hypergraphs. Commun. Phys. 4, 24 (2021).

    Article  Google Scholar 

  137. Zhang, Y., Latora, V. & Motter, A. E. Unified treatment of synchronization patterns in generalized networks with higher-order, multilayer, and temporal interactions. Commun. Phys. 4, 195 (2021).

    Article  Google Scholar 

  138. Salova, A. & D’Souza, R. M. Cluster synchronization on hypergraphs. Preprint at https://doi.org/10.48550/arXiv.2101.05464 (2021).

  139. Chen, C., Surana, A., Bloch, A. M. & Rajapakse, I. Controllability of hypergraphs. IEEE Trans. Netw. Sci. Eng. 8, 1646–1657 (2021).

    Article  MathSciNet  Google Scholar 

  140. Perra, N., Goncalves, B., Pastor-Satorras, R. & Vespignani, A. Activity driven modeling of time varying networks. Sci. Rep. 2, 469 (2012).

    Article  ADS  Google Scholar 

  141. Liu, S., Perra, N., Karsai, M. & Vespignani, A. Controlling contagion processes in activity driven networks. Phys. Rev. Lett. 112, 118702 (2014).

    Article  ADS  Google Scholar 

  142. Posfai, M., Gao, J., Cornelius, S. P., Barabasi, A. L. & D’Souza, R. M. Controllability of multiplex, multi-time-scale networks. Phys. Rev. E 94, 032316 (2016).

    Article  ADS  Google Scholar 

  143. Menichetti, G., Dall’Asta, L. & Bianconi, G. Control of multilayer networks. Sci. Rep. 6, 20706 (2016).

    Article  ADS  Google Scholar 

  144. González, A. D., Chapman, A., Dueñas-Osorio, L., Mesbahi, M. & D’Souza, R. M. Efficient infrastructure restoration strategies using the recovery operator. Comput.-Aided Civ. Infrastruct. Eng. 32, 991–1006 (2017).

    Article  Google Scholar 

  145. Chapman, A., González, A. D., Mesbahi, M., Dueñas-Osorio, L. & D’Souza, R. M. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 493–498 (IEEE, 2017).

  146. Burbano, D. & di Bernardo, M. Multiplex PI control for consensus in networks of heterogeneous linear agents. Automatica 67, 310–320 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  147. Annby-Andersson, B., Samuelsson, P., Maisi, V. F. & Potts, P. P. Maxwell’s demon in a double quantum dot with continuous charge detection. Phys. Rev. B 101, 165404 (2020).

    Article  ADS  Google Scholar 

  148. Bhattacharyya, D. & Jarzynski, C. From a feedback-controlled demon to an information ratchet in a double quantum dot. Phys. Rev. E 106, 064101 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  149. Kardar, M., Parisi, G. & Zhang, Y. C. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986).

    Article  ADS  MATH  Google Scholar 

  150. Spitzer, F. Interaction of Markov processes. Adv. Math. 5, 246–290 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  151. Angulo, M. T., Moog, C. H. & Liu, Y.-Y. A theoretical framework for controlling complex microbial communities. Nat. Commun. 10, 1045 (2019).

    Article  ADS  Google Scholar 

  152. Angulo, M. T., Aparicio, A. & Moog, C. H. Structural accessibility and structural observability of nonlinear networked systems. IEEE Trans. Netw. Sci. Eng. 7, 1656–1666 (2020).

    Article  MathSciNet  Google Scholar 

  153. Nikitin, D., Wit, C. C. D. & Frasca, P. A continuation method for large-scale modeling and control: from ODEs to PDE, a round trip. IEEE Trans. Autom. Control 67, 5118–5133 (2021).

    Article  MathSciNet  Google Scholar 

  154. Nikitin, D. Scalable Large-scale Control of Network Aggregates (Université Grenoble Alpes, 2021).

  155. Krstic, M. & Smyshlyaev, A. Boundary Control of PDEs (SIAM Press, 2008).

  156. Smyshlyaev, A. & Krstic, M. Adaptive Control of Parabolic PDEs (Princeton Univ. Press, 2010).

  157. Maffettone, G., Boldini, A., di Bernardo, M. & Porfiri, M. Continuification control of large-scale multiagent systems in a ring. IEEE Control Syst. Lett. 7, 841–846 (2023).

    Article  MathSciNet  Google Scholar 

  158. Gao, S. & Caines, P. E. Graphon control of large-scale networks of linear systems. IEEE Trans. Autom. Control 65, 4090–4105 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  159. Borgs, C. & Chayes, J. Proceedings of the 2017 ACM Conference on Economics and Computation 665–672 (Association for Computing Machinery, 2017).

  160. Lovász, L. Large Networks and Graph Limits Vol. 60 (American Mathematical Society, 2012).

  161. Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T. & Vesztergombi, K. Convergent sequences of dense graphs I: subgraph frequencies, metric properties and testing. Adv. Math. 219, 1801–1851 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  162. Lovász, L. & Szegedy, B. Limits of dense graph sequences. J. Comb. Theory Ser. B 96, 933–957 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  163. Parise, F. & Ozdaglar, A. Graphon games: a statistical framework for network games and interventions. Econometrica 91, 191–225 (2023).

    Article  Google Scholar 

  164. Mezić, I. & Banaszuk, A. Comparison of systems with complex behavior. Phys. D Nonlin. Phenom. 197, 101–133 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  165. Mezić, I. Spectral properties of dynamical systems, model reduction and decompositions. Nonlin. Dyn. 41, 309–325 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  166. Rowley, C. W., MeziĆ, I., Bagheri, S., Schlatter, P. & Henningson, D. S. Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  167. Brunton, S. L., Brunton, B. W., Proctor, J. L. & Kutz, J. N. Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE 11, e0150171 (2016).

    Article  Google Scholar 

  168. Kaiser, E., Kutz, J. N. & Brunton, S. L. Data-driven discovery of Koopman eigenfunctions for control. Mach. Learn. Sci. Technol. 2, 035023 (2021).

    Article  Google Scholar 

  169. Arbabi, H., Korda, M. & Mezić, I. 2018 IEEE Conference on Decision and Control (CDC) 6409–6414 (IEEE, 2018).

  170. Peitz, S. Controlling nonlinear PDEs using low-dimensional bilinear approximations obtained from data. Preprint at https://doi.org/10.48550/arXiv.1801.06419 (2018).

    Article  Google Scholar 

  171. Peitz, S. & Klus, S. Koopman operator-based model reduction for switched-system control of PDEs. Automatica 106, 184–191 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  172. Arbabi, H. Koopman Spectral Analysis and Study of Mixing in Incompressible Flows. PhD thesis, University of California (2017).

  173. Brunton, S. L., Budišić, M., Kaiser, E. & Kutz, J. N. Modern Koopman theory for dynamical systems. SIAM Rev. 64, 229–340 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  174. Mauroy, A., Mezić, I. & Susuki, Y. The Koopman Operator in Systems and Control (Springer, 2020).

  175. Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  176. Kaiser, E., Kutz, J. N. & Brunton, S. L. Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc. R. Soc. A Math. Phys. Eng. Sci. 474, 0335 (2018).

    MathSciNet  MATH  Google Scholar 

  177. Morrison, M. & Kutz, J. N. Nonlinear control of networked dynamical systems. IEEE Trans. Netw. Sci. Eng. 8, 174–189 (2021).

    Article  MathSciNet  Google Scholar 

  178. Hüttenrauch, M., Šošić, A. & Neumann, G. Deep reinforcement learning for swarm systems. J. Mach. Learn. Res. 20, 1966–1996 (2019).

    MathSciNet  MATH  Google Scholar 

  179. Garrabé, É. & Russo, G. Probabilistic design of optimal sequential decision-making algorithms in learning and control. Annu. Rev. Control. 54, 81–102 (2022).

    Article  MathSciNet  Google Scholar 

  180. Hewing, L., Wabersich, K. P., Menner, M. & Zeilinger, M. N. Learning-based model predictive control: toward safe learning in control. Annu. Rev. Control Robot. Auton. Syst. 3, 269–296 (2020).

    Article  Google Scholar 

  181. Kempton, L. C., Herrmann, G. & di Bernardo, M. Distributed optimisation and control of graph Laplacian eigenvalues for robust consensus via an adaptive multilayer strategy. Int. J. Robust. Nonlin. Control 27, 1499–1525 (2017).

    MathSciNet  MATH  Google Scholar 

  182. Fornasier, M. & Solombrino, F. Mean-field optimal control. ESAIM: COCV 20, 1123–1152 (2014).

    MathSciNet  MATH  Google Scholar 

  183. Sepulchre, R. Spiking control systems. Proc. IEEE 110, 577–589 (2022).

    Article  Google Scholar 

  184. Vinayagam, A. et al. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. Proc. Natl Acad. Sci. USA 113, 4976–4981 (2016).

    Article  ADS  Google Scholar 

  185. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  Google Scholar 

  186. Xiao, Y., Angulo, M. T., Lao, S., Weiss, S. T. & Liu, Y.-Y. An ecological framework to understand the efficacy of fecal microbiota transplantation. Nat. Commun. 11, 3329 (2020).

    Article  ADS  Google Scholar 

  187. Altin, N. & Eyimaya, S. E. 2021 10th International Conference on Renewable Energy Research and Application (ICRERA) 412–417 (IEEE, 2021).

  188. Watts, D. J. A simple model of global cascades on random networks. Proc. Natl Acad. Sci. USA 99, 5766–5771 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  189. Arcak, M., Meissen, C. & Packard, A. Networks of Dissipative Systems: Compositional Certification of Stability, Performance, and Safety (Springer, 2016).

  190. Bullo, F. Contraction Theory for Dynamical Systems 1.0 edn (Kindle Direct Publishing, 2022).

  191. Lohmiller, W. & Slotine, J.-J. E. On contraction analysis for nonlinear systems. Automatica 34, 683–696 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  192. Marden, J. R. & Shamma, J. S. Game theory and control. Annu. Rev. Control Robot. Auton. Syst. 1, 105–134 (2018).

    Article  Google Scholar 

  193. Lewis, F. L., Zhang, H., Hengster-Movric, K. & Das, A. Cooperative Control of Multi-Agent Systems (Springer, 2014).

  194. Gadjov, D. & Pavel, L. A passivity-based approach to nash equilibrium seeking over networks. IEEE Trans. Autom. Control 64, 1077–1092 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  195. Semsar-Kazerooni, E. & Khorasani, K. Multi-agent team cooperation: a game theory approach. Automatica 45, 2205–2213 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  196. Gharesifard, B. & Cortés, J. Distributed convergence to Nash equilibria in two-network zero-sum games. Automatica 49, 1683–1692 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank all the participants of the Satellite Symposium on ‘Controlling Complex Networks’ held at the International School and Conference on Network Science (NetSci) 2014, 2015, 2016, 2017, 2018, 2019 and 2021 and all the participants in the focus group on control held at the Future Directions in Network Science meeting in 2016 for very stimulating discussions that have helped shape our understanding. The authors also thank M. Coraggio, G. Maffettone and D. Salzano from the University of Naples Federico II, Italy and the Scuola Superiore Meridionale, Naples for their help in generating Figs. 35. The authors also thank A. Aparicio, C. Chen and X.-W. Wang and G. Mikaberidze for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this work.

Corresponding authors

Correspondence to Raissa M. D’Souza, Mario di Bernardo or Yang-Yu Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Guanrong Chen, Francesco Bullo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Souza, R.M., di Bernardo, M. & Liu, YY. Controlling complex networks with complex nodes. Nat Rev Phys 5, 250–262 (2023). https://doi.org/10.1038/s42254-023-00566-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00566-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing