Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A general strategy for the amination of electron-rich and electron-poor heteroaromatics by desaturative catalysis

Abstract

The introduction of alkylamines onto heteroaromatics is integral to the preparation of high-value molecules. Typical methods rely on heteroaromatic pre-functionalization by halogenation or nitration, followed by metal-catalysed cross-coupling or multi-step manipulation of the nitrogen functionality. This results in often unselective or low-yielding synthetic routes. Here we show an alternative approach in which saturated heterocyclic ketones are used as aryl surrogates for desaturative coupling with amines. The process operates under mild photochemical conditions, is compatible with complex amines and delivers both electron-poor and -rich heteroaromatics that are difficult to access by other methods. As ketones are readily decorated by carbonyl chemistry, this retrosynthetic tactic escapes the rules and limitations of aromatic reactivity and metal-catalysed cross-couplings. Our process uses enamine formation to create the key carbon–nitrogen bond, followed by two rounds of photoredox oxidation and cobalt-catalysed desaturation. The two desaturation steps are distinct, as the cobaloxime first acts as a hydrogen atom abstractor and then an oxidant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relevance and preparation of aminated heteroaromatics.
Fig. 2: Design and development of a desaturative approach to 4-aminopyridines.
Fig. 3: Substrate scope for the synthesis of 4-aminopyridines.
Fig. 4: Substrate scope for the synthesis of 3-amino-pyridines, pyrroles, furans, thiophenes and pyrazoles.
Fig. 5: Proposed mechanism for the desaturative aminations.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information or from the authors upon reasonable request.

References

  1. Bariwal, J. & Van Der Eycken, E. C–N bond forming cross-coupling reactions: an overview. Chem. Soc. Rev. 42, 9283 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Hili, R. & Yudin, A. K. Making carbon-nitrogen bonds in biological and chemical synthesis. Nat. Chem. Biol. 2, 284–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Mann, A. in Amino Group Chemistry: From Synthesis to the Life Sciences (ed. Ricci, A.) Ch. 6 (Wiley, 2008).

  4. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Katritzky, A. R., Ramsden, C. A., Joule, J. A. & Zhdankin, V. V. in Handbook of Heterocyclic Chemistry (eds Zhdankin, V. V. et al.) 3rd edn, Vol. 2 (Elsevier, 2010).

  8. Fier, P. S., Kim, S. & Cohen, R. D. A multifunctional reagent designed for the site-selective amination of pyridines. J. Am. Chem. Soc. 142, 8614–8618 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Pang, J. H., Kaga, A., Roediger, S., Lin, M. H. & Chiba, S. Revisiting the chichibabin reaction: C2 amination of pyridines with a NaH−iodide composite. Asian J. Org. Chem. 8, 1058–1060 (2019).

    Article  CAS  Google Scholar 

  10. Balkenhohl, M., Heinz, B., Abegg, T. & Knochel, P. Amination of phosphorodiamidate-substituted pyridines and related N-heterocycles with magnesium amides. Org. Lett. 20, 8057–8060 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Hendrick, C. E., Bitting, K. J., Cho, S. & Wang, Q. Site-selective copper-catalyzed amination and azidation of arenes and heteroarenes via deprotonative zincation. J. Am. Chem. Soc. 139, 11622–11628 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pang, J. H., Kaga, A. & Chiba, S. Nucleophilic amination of methoxypyridines by a sodium hydride–iodide composite. Chem. Commun. 54, 10324–10327 (2018).

    Article  CAS  Google Scholar 

  13. Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Creutz, S. E., Lotito, K. J., Fu, G. C. & Peters, J. C. Photoinduced Ullmann C–N coupling: demonstrating the viability of a radical pathway. Science 338, 647–651, (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Roy, S., Paul, B., Mukherjee, A., Kundu, B. & Talukdar, A. Copper-catalyzed selective C–N bond formation with 2-amino, 2-hydroxy and 2-bromo-5-halopyridine. RSC Adv. 7, 44366–44370 (2017).

    Article  CAS  Google Scholar 

  16. Corcoran, E. B. et al. Aryl amination using ligand-free Ni(II) salts and photoredox catalysis. Science 353, 279–283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, C. et al. Electrochemically enabled, nickel-catalyzed amination. Angew. Chem. Int. Ed. 56, 13088–13093 (2017).

    Article  CAS  Google Scholar 

  18. Boyle, B. T., Levy, J. N., de Lescure, L., Paton, R. S. & McNally, A. Halogenation of the 3-position of pyridines through Zincke imine intermediates. Science 378, 773–779 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao, H., Cheng, Q. & Studer, A. Radical and ionic meta-C–H functionalization of pyridines, quinolines, and isoquinolines. Science 378, 779–785 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Charles, M. D., Schultz, P. & Buchwald, S. L. Efficient Pd-catalyzed amination of heteroaryl halides. Org. Lett. 7, 3965–3968, (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Reichert, E. C., Feng, K., Sather, A. C. & Buchwald, S. L. Pd-catalyzed amination of base-sensitive five-membered heteroaryl halides with aliphatic amines. J. Am. Chem. Soc. 145, 3323–3329 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arrechea, P. L. & Buchwald, S. L. Biaryl phosphine based Pd(II) amido complexes: the effect of ligand structure on reductive elimination. J. Am. Chem. Soc. 138, 12486–12493, (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hooper, M. W. & Hartwig, J. F. Understanding the coupling of heteroaromatic substrates: synthesis, structures, and reductive eliminations of heteroarylpalladium amido complexes. Organometallics 22, 3394–3403 (2003).

    Article  CAS  Google Scholar 

  24. Sather, A. C. & Martinot, T. A. Data-rich experimentation enables palladium-catalyzed couplings of piperidines and five-membered (hetero)aromatic electrophiles. Org. Process Res. Dev. 23, 1725–1739 (2019).

    Article  CAS  Google Scholar 

  25. Caldora, H. P., Zhang, Z., Tilby, M. J., Turner, O. & Leonori, D. Dual photochemical H‐atom transfer and cobalt catalysis for the desaturative synthesis of phenols from cyclohexanones. Angew. Chem. Int. Ed. 62, e202301656 (2023).

    Article  CAS  Google Scholar 

  26. Deng, K., Huang, H. & Deng, G.-J. Recent advances in the transition metal-free oxidative dehydrogenative aromatization of cyclohexanones. Org. Biomolecular Chem. 19, 6380–6391 (2021).

    Article  CAS  Google Scholar 

  27. Ichitsuka, T. et al. Stereoretentive N-arylation of amino acid esters with cyclohexanones utilizing a continuous‐flow system. Chem. Eur. J. 27, 10844–10848 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, J. et al. Synthesis of N-aryl amines enabled by photocatalytic dehydrogenation. Chem. Sci. 12, 1915–1923 (2021).

    Article  CAS  Google Scholar 

  29. Li, H., Yatabe, T., Takayama, S. & Yamaguchi, K. Heterogeneously catalyzed selective acceptorless dehydrogenative aromatization to primary anilines from ammonia via concerted catalysis and adsorption control. J. Am. Chem. Soc. Au 3, 1376–1384 (2023).

    CAS  Google Scholar 

  30. Qiu, Z., Zeng, H. & Li, C.-J. Coupling without coupling reactions: en route to developing phenols as sustainable coupling partners via dearomatization–rearomatization processes. Acc. Chem. Res. 53, 2395–2413 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Tao, S.-K. et al. Electrochemical cross-dehydrogenative aromatization protocol for the synthesis of aromatic amines. Org. Lett. 24, 1011–1016 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Dighe, S. U., Juliá, F., Luridiana, A., Douglas, J. J. & Leonori, D. A photochemical dehydrogenative strategy for aniline synthesis. Nature 584, 75–81 (2020).

    Article  Google Scholar 

  33. Zhao, H., Caldora, H. P., Turner, O., Douglas, J. J. & Leonori, D. A desaturative approach for aromatic aldehyde synthesis via synergistic enamine, photoredox and cobalt triple catalysis. Angew. Chem. Int. Ed. 61, e202201870 (2022).

    Article  CAS  Google Scholar 

  34. Afanasenko, A., Kavun, A., Thomas, D. & Li, C. J. A one‐pot approach for bio‐based arylamines via a combined photooxidative dearomatization–rearomatization strategy. Chem. Eur. J. 28, e202200309 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Huang, C.-Y., Li, J. & Li, C.-J. A cross-dehydrogenative C(sp3)−H heteroarylation via photo-induced catalytic chlorine radical generation. Nat. Commun. 12, 4010 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, J., Huang, C.-Y., Han, J.-T. & Li, C.-J. Development of a quinolinium/cobaloxime dual photocatalytic system for oxidative C–C cross-couplings via H2 release. ACS Catal. 11, 14148–14158 (2021).

    Article  CAS  Google Scholar 

  37. He, K. H. et al. Acceptorless dehydrogenation of N‐heterocycles by merging visible‐light photoredox catalysis and cobalt catalysis. Angew. Chem. Int. Ed. 56, 3080–3084 (2017).

    Article  CAS  Google Scholar 

  38. Jia, Z., Yang, Q., Zhang, L. & Luo, S. Photoredox mediated acceptorless dehydrogenative coupling of saturated N-heterocycles. ACS Catal. 9, 3589–3594 (2019).

    Article  CAS  Google Scholar 

  39. West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).

    Article  PubMed  Google Scholar 

  40. Ritu et al. Photocatalyzed dehydrogenation of aliphatic N-heterocycles releasing dihydrogen. ACS Catal. 12, 10326–10332 (2022).

    Article  CAS  Google Scholar 

  41. Bam, R., Pollatos, A. S., Moser, A. J. & West, J. G. Mild olefin formation via bio-inspired vitamin B12 photocatalysis. Chem. Sci. 12, 1736–1744 (2021).

    Article  CAS  Google Scholar 

  42. West, J. G. & Kattamuri, P. V. Cooperative hydrogen atom transfer: from theory to applications. Synlett 32, 1179–1186 (2021).

    Article  Google Scholar 

  43. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Khadra, A., Mayer, S., Mitchell, D., Rodriguez, M. J. & Organ, M. G. A general protocol for the broad-spectrum cross-coupling of nonactivated sterically hindered 1° and 2° amines. Organometallics 36, 3573–3577 (2017).

    Article  Google Scholar 

  45. Park, N. H., Vinogradova, E. V., Surry, D. S. & Buchwald, S. L. Design of new ligands for the palladium-catalyzed arylation of α-branched secondary amines. Angew. Chem. Int. Ed. 54, 8259–8262, (2015).

    Article  CAS  Google Scholar 

  46. Barham, J. P., John, M. P. & Murphy, J. A. Contra-thermodynamic hydrogen atom abstraction in the selective C–H functionalization of trialkylamine N–CH3 groups. J. Am. Chem. Soc. 138, 15482–15487 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Capaldo, L., Ravelli, D. & Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 122, 1875–1924 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Guo, W. et al. Metal-free synthesis of N-aryl amides using organocatalytic ring-opening aminolysis of lactones. ChemSusChem 10, 1969–1975 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Bentabed-Ababsa, G. et al. Direct metalation of heteroaromatic esters and nitriles using a mixed lithium−cadmium base. Subsequent conversion to dipyridopyrimidinones. J. Org. Chem. 75, 839–847 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Levy, J. N., Alegre-Requena, J. V., Liu, R., Paton, R. S. & McNally, A. Selective halogenation of pyridines using designed phosphine reagents. J. Am. Chem. Soc. 142, 11295–11305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baker, S. I. et al. Enhanced reactivity for aromatic bromination via halogen bonding with lactic acid derivatives. J. Org. Chem. 87, 8492–8502 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Yu, Q., Hu, L. A., Wang, Y., Zheng, S. & Huang, J. Directed meta-selective bromination of arenes with ruthenium catalysts. Angew. Chem. Int. Ed. 54, 15284–15288 (2015).

    Article  CAS  Google Scholar 

  53. Leclerc, G., Marciniak, G., Decker, N. & Schwartz, J. Cardiotonic agents. 1. Synthesis and structure–activity relationships in a new class of 3-, 4- and 5-pyridyl-2(1H)-quinolone derivatives. J. Med. Chem. 29, 2427–2432 (1986).

    Article  CAS  PubMed  Google Scholar 

  54. Bayliss, T. et al. Phosphoinositide 3-kinase inhibitor compounds and methods of use. US Patent WO/2008/070740 (2008).

  55. Allen, L. J., Cabrera, P. J., Lee, M. & Sanford, M. S. N-Acyloxyphthalimides as nitrogen radical precursors in the visible light photocatalyzed room temperature C–H amination of arenes and heteroarenes. J. Am. Chem. Soc. 136, 5607–5610, (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Foo, K., Sella, E., Thomé, I., Eastgate, M. D. & Baran, P. S. A mild, ferrocene-catalyzed C–H imidation of (hetero)arenes. J. Am. Chem. Soc. 136, 5279–5282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, H., Kim, T., Lee, D. G., Roh, S. W. & Lee, C. Nitrogen-centered radical-mediated C–H imidation of arenes and heteroarenes via visible light induced photocatalysis. Chem. Commun. 50, 9273–9276 (2014).

    Article  CAS  Google Scholar 

  58. Cao, H., Cheng, Q. & Studer, A. meta-Selective C−H functionalization of pyridines. Angew. Chem. Int. Ed. 62, e202302941 (2023).

    Article  CAS  Google Scholar 

  59. Josephitis, C. M., Nguyen, H. M. H. & McNally, A. Late-stage C–H functionalization of azines. Chem. Rev. 123, 7655–7691 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Broggi, J., Clavier, H. & Nolan, S. P. N-Heterocyclic carbenes (NHCs) containing N–C-palladacycle complexes: synthesis and reactivity in aryl amination reactions. Organometallics 27, 5525–5531 (2008).

    Article  CAS  Google Scholar 

  61. Ruiz-Castillo, P., Blackmond, D. G. & Buchwald, S. L. Rational ligand design for the arylation of hindered primary amines guided by reaction progress kinetic analysis. J. Am. Chem. Soc. 137, 3085–3092 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shen, Q., Ogata, T. & Hartwig, J. F. Highly reactive, general and long-lived catalysts for palladium-catalyzed amination of heteroaryl and aryl chlorides, bromides, and iodides: scope and structure-activity relationships. J. Am. Chem. Soc. 130, 6586–6596 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guthikonda, R. N. et al. Structure–activity relationships in the 2-arylcarbapenem series. Synthesis of 1-methyl-2-arylcarbapenems. J. Med. Chem. 30, 871–880 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Li, Y., Plesescu, M. & Prakash, S. R. Synthesis of C-14 and C-13, H-2-labeled IKK inhibitor: [14C] and [13C4,D3]-N-(6-chloro-7-methoxy-9H-pyrido[3,4-b]indol-8-yl)-2-methyl-3-pyridinecarboxamide. J. Label. Compd. Radiopharm. 49, 789–799 (2006).

    Article  CAS  Google Scholar 

  65. Prabhath, M. R. R., Romanova, J., Curry, R. J., Silva, S. R. P. & Jarowski, P. D. The role of substituent effects in tuning metallophilic interactions and emission energy of bis-4-(2-pyridyl)-1,2,3-triazolatoplatinum(II) complexes. Angew. Chem. Int. Ed. 54, 7949–7953 (2015).

    Article  CAS  Google Scholar 

  66. Benson, S. C., Li, J. H. & Snyder, J. K. Indole as a dienophile in inverse electron demand Diels–Alder reactions. 3. Intramolecular reactions with 1,2,4-triazines to access the canthine skeleton. J. Org. Chem. 57, 5285–5287 (1992).

    Article  CAS  Google Scholar 

  67. Gruseck, U. & Heuschmann, M. The remarkable reactivity of 2-alkylidene-imidazolidines in inverse Diels-Alder reactions. Tetrahedron Lett. 28, 6027–6030 (1987).

    Article  CAS  Google Scholar 

  68. Jalani, H. B. et al. Iodine-promoted one-pot synthesis of highly substituted 4-aminopyrroles and bis-4-aminopyrrole from aryl methyl ketones, arylamines, and enamines. Adv. Synth. Catal. 360, 4073–4079 (2018).

    Article  CAS  Google Scholar 

  69. Kumari, C. & Goswami, A. Access to 5-substituted 3-aminofuran/thiophene-2-carboxylates from bifunctional alkynenitriles. Adv. Synth. Catal. 364, 2254–2259 (2022).

    Article  CAS  Google Scholar 

  70. Lei, X., Li, L., He, Y.-P. & Tang, Y. Rhodium(II)-catalyzed formal [3+2] cycloaddition of N-sulfonyl-1,2,3-triazoles with isoxazoles: entry to polysubstituted 3-aminopyrroles. Org. Lett. 17, 5224–5227 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Li, K. & You, J. Cascade oxidative coupling/cyclization: a gateway to 3-amino polysubstituted five-membered heterocycles. J. Org. Chem. 81, 2327–2339 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Peng, J. et al. Synthesis of polysubstituted 3-amino pyrroles via palladium-catalyzed multicomponent reaction. J. Org. Chem. 82, 3581–3588 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, Y., Lei, X. & Tang, Y. Rh(II)-catalyzed cycloadditions of 1-tosyl 1,2,3-triazoles with 2H-azirines: switchable reactivity of Rh-azavinylcarbene as [2C]- or aza-[3C]-synthon. Chem. Commun. 51, 4507–4510 (2015).

  74. You, X. et al. Titanium-mediated cross-coupling reactions of 1,3-butadiynes with α-iminonitriles to 3-aminopyrroles: observation of an imino aza-Nazarov cyclization. Org. Chem. Front. 1, 940–946 (2014).

    Article  CAS  Google Scholar 

  75. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363, (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Maillard, P. & Giannotti, C. Photolysis of alkylcobaloximes, methyl-salen, cobalamines and coenzyme B12 in protic solvents: an ESR and spin-trapping technique study. J. Organomet. Chem. 182, 225–237 (1979).

    Article  CAS  Google Scholar 

  77. Schrauzer, G. N., Lee, L.-P. & Sibert, J. W. Alkylcobalamins and alkylcobaloximes. Electronic structure, spectra, and mechanism of photodealkylation. J. Am. Chem. Soc. 92, 2997–3005 (1970).

    Article  CAS  PubMed  Google Scholar 

  78. Sun, X., Chen, J. & Ritter, T. Catalytic dehydrogenative decarboxyolefination of carboxylic acids. Nat. Chem. 10, 1229–1233 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Elgrishi, N., Kurtz, D. A. & Dempsey, J. L. Reaction parameters influencing cobalt hydride formation kinetics: implications for benchmarking H2-evolution catalysts. J. Am. Chem. Soc. 139, 239–244 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Estes, D. P., Grills, D. C. & Norton, J. R. The reaction of cobaloximes with hydrogen: products and thermodynamics. J. Am. Chem. Soc. 136, 17362–17365 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Jiang, Y.-K. & Liu, J.-H. DFT studies of cobalt hydride intermediate on cobaloxime-catalyzed H2 evolution pathways. Int. J. Quantum Chem. 112, 2541–2546 (2012).

    Article  CAS  Google Scholar 

  83. Lacy, D. C., Roberts, G. M. & Peters, J. C. The cobalt hydride that never was: revisiting Schrauzer’s “hydridocobaloxime”. J. Am. Chem. Soc. 137, 4860–4864 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Cartwright, K. C., Davies, A. M. & Tunge, J. A. Cobaloxime‐catalyzed hydrogen evolution in photoredox‐facilitated small‐molecule functionalization. Eur. J. Org. Chem. 2020, 1245–1258 (2020).

    Article  CAS  Google Scholar 

  85. Basel, Y. & Hassner, A. Di-tert-butyl dicarbonate and 4-(dimethylamino)pyridine revisited. Their reactions with amines and alcohols1. J. Org. Chem. 65, 6368–6380 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Fersht, A. R. & Jencks, W. P. Acetylpyridinium ion intermediate in pyridine-catalyzed hydrolysis and acyl transfer reactions of acetic anhydride. Observation, kinetics, structure–reactivity correlations, and effects of concentrated salt solutions. J. Am. Chem. Soc. 92, 5432–5442 (1970).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.L. thanks the European Research Council for a research grant (101086901). H.P.C. thanks AstraZeneca for a PhD CASE Award. J.C. thanks the EU funding from an MSCA Postdoctoral Fellowship (101104383-DES-B-CAT). L.M.A. is a Ramón y Cajal fellow (ref. RYC2021-030994-I) and thanks MCIN/AEI and NextGenerationEU/PRTR for support and the KAUST Supercomputer Laboratory (KSL) for providing the computational resources (Shaheen II). We thank C. Vermeeren (RWTH Aachen University) for help with the purification of some of the products.

Author information

Authors and Affiliations

Authors

Contributions

A.R. and D.L. designed the project and directed the work. J.C., H.C. and E.M.d.T. performed all the synthetic and mechanistic experiments. L.M.A. performed the computational studies. All the authors analysed the results and wrote the paper.

Corresponding authors

Correspondence to Alessandro Ruffoni or Daniele Leonori.

Ethics declarations

Competing interests

Authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Julian West, Wen-Jing Xiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22 and Tables 1–20.

Supplementary Data 1

Coordinates (xyz) of the computational section.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corpas, J., Caldora, H.P., Di Tommaso, E.M. et al. A general strategy for the amination of electron-rich and electron-poor heteroaromatics by desaturative catalysis. Nat Catal (2024). https://doi.org/10.1038/s41929-024-01152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-024-01152-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing