Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reactant-induced dynamics of lithium imide surfaces during the ammonia decomposition process

Abstract

Ammonia decomposition on lithium imide surfaces has been intensively investigated owing to its potential role in a sustainable hydrogen-based economy. Here, through advanced molecular dynamics simulations of ab initio accuracy, we show that the surface structure of the catalyst changes on exposure to the reactants and a dynamic state is activated. It is this highly fluctuating state that is responsible for catalysis and not a well-defined static catalytic centre. In this activated environment, a series of reactions that eventually leads to the release of N2 and H2 molecules becomes possible. Once the flow of reagent is terminated, the imide surface returns to its pristine state. We suggest that by properly engineering this dynamic interfacial state one can design improved catalytic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bulk and surface structure of Li2NH.
Fig. 2: Schematic representation of the initial reaction steps.
Fig. 3: Free energy surface for diazanediide formation.
Fig. 4: Schematic of one representative set of decomposition reactions.
Fig. 5: Simplified scheme outlining the catalytic process.

Similar content being viewed by others

Data availability

All the inputs and instructions to reproduce the results presented in this article can be found in the PLUMED-NEST repository (plumID 23.028).

References

  1. Lucentini, I., Garcia, X., Vendrell, X. & Llorca, J. Review of the decomposition of ammonia to generate hydrogen. Ind. Eng. Chem. Res. 60, 18560–18611 (2021).

    Article  CAS  Google Scholar 

  2. Friend, C. M. & Xu, B. Heterogeneous catalysis: a central science for a sustainable future. Acc. Chem. Res. 50, 517–521 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Schlögl, R. Heterogeneous catalysis. Angew. Chem. Int. Ed. 54, 3465–3520 (2015).

    Article  Google Scholar 

  4. Spencer, M. Stable and metastable metal surfaces in heterogeneous catalysis. Nature 323, 685–687 (1986).

    Article  CAS  Google Scholar 

  5. Topsøe, H. Developments in operando studies and in situ characterization of heterogeneous catalysts. J. Catal. 216, 155–164 (2003).

    Article  Google Scholar 

  6. Zhang, Z., Zandkarimi, B. & Alexandrova, A. N. Ensembles of metastable states govern heterogeneous catalysis on dynamic interfaces. Acc. Chem. Res. 53, 447–458 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Sun, G. & Sautet, P. Active site fluxional restructuring as a new paradigm in triggering reaction activity for nanocluster catalysis. Acc. Chem. Res. 54, 3841–3849 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Y.-G., Mei, D., Glezakou, V.-A., Li, J. & Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 6, 6511 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, P., Xiong, Z., Luo, J., Lin, J. & Tan, K. L. Interaction of hydrogen with metal nitrides and imides. Nature 420, 302–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. David, W. I. F. et al. A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. J. Am. Chem. Soc. 129, 1594–1601 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Makepeace, J. W., Wood, T. J., Hunter, H. M. A., Jones, M. O. & David, W. I. F. Ammonia decomposition catalysis using non-stoichiometric lithium imide. Chem. Sci. 6, 3805–3815 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo, J. et al. Lithium imide synergy with 3D transition-metal nitrides leading to unprecedented catalytic activities for ammonia decomposition. Angew. Chem. Int. Ed. 54, 2950–2954 (2015).

    Article  CAS  Google Scholar 

  13. Mukherjee, S., Devaguptapu, S. V., Sviripa, A., Lund, C. R. & Wu, G. Low-temperature ammonia decomposition catalysts for hydrogen generation. Appl. Catal. B 226, 162–181 (2018).

    Article  CAS  Google Scholar 

  14. Makepeace, J. W. et al. Compositional flexibility in Li–N–H materials: implications for ammonia catalysis and hydrogen storage. Phys. Chem. Chem. Phys. 23, 15091–15100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett. 55, 2471 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Juza, R. & Opp, K. Metallamide und metallnitride, 25. Mitteilung. zur kenntnis des lithiumimides. Z. Anorg. Allg. Chem. 266, 325–330 (1951).

    Article  CAS  Google Scholar 

  17. Noritake, T. et al. Crystal structure and charge density analysis of Li2NH by synchrotron X-ray diffraction. J. Alloys Compd 393, 264–268 (2005).

    Article  CAS  Google Scholar 

  18. Balogh, M. P., Jones, C. Y., Herbst, J., Hector Jr, L. G. & Kundrat, M. Crystal structures and phase transformation of deuterated lithium imide, Li2ND. J. Alloys Compd 420, 326–336 (2006).

  19. Miceli, G., Ceriotti, M., Bernasconi, M. & Parrinello, M. Static disorder and structural correlations in the low-temperature phase of lithium imide. Phys. Rev. B 83, 054119 (2011).

    Article  Google Scholar 

  20. Hull, S. Superionics: crystal structures and conduction processes. Rep. Prog. Phys. 67, 1233–1314 (2004).

    Article  CAS  Google Scholar 

  21. Araújo, C. M., Blomqvist, A., Scheicher, R. H., Chen, P. & Ahuja, R. Superionicity in the hydrogen storage material Li2NH: molecular dynamics simulations. Phys. Rev. B 79, 172101 (2009).

    Article  Google Scholar 

  22. Miceli, G., Ceriotti, M., Angioletti-Uberti, S., Bernasconi, M. & Parrinello, M. First-principles study of the high-temperature phase of Li2NH. J. Phys. Chem. C 115, 7076–7080 (2011).

    Article  CAS  Google Scholar 

  23. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  PubMed  Google Scholar 

  24. Zhang, L., Han, J., Wang, H., Car, R. & Weinan, E. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Parr, R. G. Density Functional Theory of Atoms and Molecules (Springer, 1980).

  26. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Niu, H., Bonati, L., Piaggi, P. M. & Parrinello, M. Ab initio phase diagram and nucleation of gallium. Nat. Commun. 11, 2654 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, M., Bonati, L., Polino, D. & Parrinello, M. Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water. Catal. Today 387, 143–149 (2022).

    Article  CAS  Google Scholar 

  29. Yang, M., Karmakar, T. & Parrinello, M. Liquid–liquid critical point in phosphorus. Phys. Rev. Lett. 127, 080603 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Invernizzi, M. & Parrinello, M. Rethinking metadynamics: from bias potentials to probability distributions. J. Phys. Chem. Lett. 11, 2731–2736 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Bonati, L. & Parrinello, M. Silicon liquid structure and crystal nucleation from ab initio deep metadynamics. Phys. Rev. Lett. 121, 265701 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Gartner III, T. E., Piaggi, P. M., Car, R., Panagiotopoulos, A. Z. & Debenedetti, P. G. Liquid –liquid transition in water from first principles. Phys. Rev. Lett. 129, 255702 (2022).

    Article  Google Scholar 

  33. Meuwly, M. Machine learning for chemical reactions. Chem. Rev. 121, 10218–10239 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Makepeace, J. W., Jones, M. O., Callear, S. K., Edwards, P. P. & David, W. I. F. In situ X-ray powder diffraction studies of hydrogen storage and release in the Li–N–H system. Phys. Chem. Chem. Phys. 16, 4061–4070 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Seitz, F. Color centers in alkali halide crystals. Rev. Mod. Phys. 18, 384 (1946).

    Article  CAS  Google Scholar 

  36. Crawford, J. H. & Slifkin, L. M. Point Defects in Solids: General and Ionic Crystals (Springer Science, 1972).

  37. Ogasawara, K. et al. Ammonia decomposition over CaNH-supported Ni catalysts via an NH2-vacancy-mediated Mars–van Krevelen mechanism. ACS Catal. 11, 11005–11015 (2021).

    Article  CAS  Google Scholar 

  38. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  39. Ray, D., Ansari, N., Rizzi, V., Invernizzi, M. & Parrinello, M. Rare event kinetics from adaptive bias enhanced sampling. J. Chem. Theory Comput. 18, 6500–6509 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Hoffman, B. M., Lukoyanov, D., Dean, D. R. & Seefeldt, L. C. Nitrogenase: a draft mechanism. Acc. Chem. Res. 46, 587–595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seefeldt, L. C. et al. Energy transduction in nitrogenase. Acc. Chem. Res. 51, 2179–2186 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bonati, L. et al. Non-linear temperature dependence of nitrogen adsorption and decomposition on Fe(111) surface. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2023-mlmwv (2023).

  43. Li, P., Zeng, X. & Li, Z. Understanding high-temperature chemical reactions on metal surfaces: a case study on equilibrium concentration and diffusivity of CxHy on a Cu(111) surface. JACS Au 2, 443–452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao, H. et al. Graphene at liquid copper catalysts: atomic-scale agreement of experimental and first-principles adsorption height. Adv. Sci. 9, 2204684 (2022).

    Article  CAS  Google Scholar 

  45. Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Xu, L. et al. Formation of active sites on transition metals through reaction-driven migration of surface atoms. Science 380, 70–76 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  CAS  Google Scholar 

  48. Bonnet, M.-L., Iannuzzi, M., Sebastiani, D. & Hutter, J. Local disorder in lithium imide from density functional simulation and NMR spectroscopy. J. Phys. Chem. C 116, 18577–18583 (2012).

    Article  CAS  Google Scholar 

  49. Miceli, G., Cucinotta, C. S., Bernasconi, M. & Parrinello, M. First principles study of the LiNH2/Li2NH transformation. J. Phys. Chem. C 114, 15174–15183 (2010).

    Article  CAS  Google Scholar 

  50. Tasker, P., Colbourn, E. & Mackrodt, W. Segregation of isovalent impurity cations at the surfaces of MgO and CaO. J. Am. Ceram. Soc. 68, 74–80 (1985).

    Article  CAS  Google Scholar 

  51. VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  52. Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Lobster: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604–613 (2014).

    Article  CAS  Google Scholar 

  54. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  Google Scholar 

  55. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Giannozzi, P. et al. Quantum espresso toward the exascale. J. Chem. Phys. 152, 154105 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).

    Article  PubMed  Google Scholar 

  58. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  PubMed  Google Scholar 

  59. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703 (1996).

    Article  CAS  Google Scholar 

  60. Hartwigsen, C., Gœdecker, S. & Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to RN. Phys. Rev. B 58, 3641 (1998).

    Article  CAS  Google Scholar 

  61. Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. Optimized pseudopotentials. Phys. Rev. B 41, 1227 (1990).

    Article  CAS  Google Scholar 

  62. Wang, H., Zhang, L., Han, J. & Weinan, E. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).

    Article  CAS  Google Scholar 

  63. Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article  CAS  Google Scholar 

  64. Zhang, L. et al. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. Adv. Neural Inf. Process. 31, 4436–4446 (2018).

    Google Scholar 

  65. Invernizzi, M., Piaggi, P. M. & Parrinello, M. Unified approach to enhanced sampling. Phys. Rev. X 10, 041034 (2020).

    CAS  Google Scholar 

  66. Zhang, Y. et al. DP-GEN: a concurrent learning platform for the generation of reliable deep learning-based potential energy models. Comput. Phys. Commun. 253, 107206 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the help of V. Rizzi in the initial stages of the simulation and useful discussions with E. Trizio and M. Bernasconi. We are grateful to N. Ansari for the help with the graphic. We thank V. Glezakou and R. Schlögl for reading a preliminary version of the paper and G. Ertl for his encouraging remarks. M.P. thanks R. Schlögl for sharing his insight into catalysis. This work closely reflects his vision. However, any error or misinterpretation is our own responsibility. Funding: This work was supported by funds from the AmmoRef project in the framework of the agreement between the Max Planck Institute and the Italian Institute of Technology. Computational resources were also provided by the Swiss National Supercomputing Centre (CSCS) under project ID nos. S1134 and S1183.

Author information

Authors and Affiliations

Authors

Contributions

M.Y., U.R. and M.P. made substantial contributions to the design and implementation of the work and wrote the paper.

Corresponding author

Correspondence to Michele Parrinello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Josh Makepeace, Johannes Margraf and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Table 1, Note, Discussion and Methods.

Supplementary Video 1

Diffusion mechanism of Li+ cations, This video shows the diffusion of a Li+ cation (represented as a red ball) from one tetrahedral site to another through an octahedral interstitial site.

41929_2023_1006_MOESM3_ESM.mp4

Supplementary Video 2. Superionic behaviour of the (111) surface. This video shows NH2− anions oscillating around the equilibrium positions while Li+ cations diffuse. We tagged for clarity one imide group (shown in the ball and stick representation) and Li+ cation (represented as a red ball).

Supplementary Video 3

Ammonia adsorption on the (111) surface. This video shows two NH3 reacting with two NH2− resulting in four NH2. This process occurs spontaneously on the nanosecond timescale.

Supplementary Video 4

Amide diffusion on the surface after the reaction with ammonia. This video shows that NH2 moves frequently between the top layer and the adlayer. It can also move to the second layer. This process occurs spontaneously on the nanosecond timescale.

Supplementary Video 5

Imide diffusion on the surface after the reaction with ammonia. This video shows one of the NH2− moving from the top layer to the second layer. This process occurs spontaneously on the nanosecond timescale.

Supplementary Video 6

This video shows the Grotthus-like proton exchange between NH2− and NH2. This process occurs spontaneously on the nanosecond timescale.

Supplementary Video 7

This video shows the diazanediide formation according to: \({{{{\rm{NH}}}}}^{2-}+{{{{\rm{NH}}}}}^{2-}\to {[{{{\rm{HN}}}}-{{{\rm{NH}}}}]}^{2-}+2{{{{\rm{e}}}}}^{-}\). The position of one NH2− before the reaction is marked with a grey transparent sphere. To simulate this step we used \({S}_{\mathrm{NN}}^{\mathrm{max}}\) as CV with ΔE = 180 kJ mol−1.

Supplementary Video 8

This video shows the reaction: \({{{{\rm{NH}}}}}_{{2}}^{-}\to [{{{\rm{NH}}}}]^{*} +{{{{\rm{H}}}}}^{-}\). The abstracted H atom in NH2 is marked with a grey transparent sphere. Lithium atoms within 2.5 Å from the abstracted H are displayed. The NH distance between the reactive atoms is reported in ångströms. To simulate this step we used \({S}_{\mathrm{HN}}^{\mathrm{min}}\) as CV with ΔE = 100 kJ mol−1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Raucci, U. & Parrinello, M. Reactant-induced dynamics of lithium imide surfaces during the ammonia decomposition process. Nat Catal 6, 829–836 (2023). https://doi.org/10.1038/s41929-023-01006-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01006-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing