Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blocking the sulfonate group in Nafion to unlock platinum’s activity in membrane electrode assemblies

Abstract

The specific adsorption of ionomer sulfonate groups on Pt-based catalysts in membrane electrode assemblies (MEAs) has severely restricted Pt catalytic activity, Pt utilization, proton conductivity and mass transport. Here we report a blocking strategy using cyclohexanol to mitigate the detrimental impacts of the Nafion ionomer. Cyclohexanol with a chair or boat conformation blocked the adsorption path of the ionomer onto the Pt surface via coordination with the ionomer, which released the Pt activity sites and dramatically improved the mass transport path. This MEA with cyclohexanol exhibits striking performance improvement in the kinetic and mass transport regions, along with strong stability. The proposed strategy provides a direction to tune the Pt/ionomer interface and improve the catalytic activity of Pt in MEA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterization of cyclohexanol-Nafion.
Fig. 2: Correlation of cyclohexanol incorporation on the microphase separation and proton conductivity of Nafion membrane.
Fig. 3: Electrochemical evaluation of the cyclohexanol-Nafion ionomer-Pt/C cathode in the fuel cell.
Fig. 4: Effects of cyclohexanol incorporation on fuel-cell performance.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Xie, M. et al. Pt-Co@Pt octahedral nanocrystals: enhancing their activity and durability toward oxygen reduction with an intermetallic core and an ultrathin shell. J. Am. Chem. Soc. 143, 8509–8518 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Hu, Y. et al. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem. Int. Ed. 60, 6533–6538 (2021).

    Article  CAS  Google Scholar 

  3. Li, M. et al. Lavender-like Ga-doped Pt3Co nanowires for highly stable and active electrocatalysis. ACS Catal. 10, 3018–3026 (2020).

    Article  CAS  Google Scholar 

  4. Cheng, Q. et al. High-loaded sub-6-nm Pt1Co1 intermetallic compounds with highly efficient performance expression in PEMFCs. Energy Environ. Sci. 15, 278–286 (2022).

    Article  CAS  Google Scholar 

  5. Huang, L. et al. Boosting oxygen reduction via integrated construction and synergistic catalysis of porous platinum alloy and defective graphitic carbon. Angew. Chem. Int. Ed. 60, 25530–25537 (2021).

    Article  CAS  Google Scholar 

  6. Ding, H. et al. Epitaxial growth of ultrathin highly crystalline Pt-Ni nanostructure on a metal carbide template for efficient oxygen reduction reaction. Adv. Mater. 34, 2109188 (2022).

    Article  CAS  Google Scholar 

  7. Chong, L. et al. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Kodama, K., Nagai, T., Kuwaki, A., Jinnouchi, R. & Morimoto, Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 16, 140–147 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Sun, Y. et al. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nat. Commun. 12, 5984 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiao, F. et al. Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells. Nat. Catal. 5, 503–512 (2022).

    Article  CAS  Google Scholar 

  11. Fan, J. et al. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 6, 475–486 (2021).

    Article  CAS  Google Scholar 

  12. Ahn, C. Y. et al. Differences in the electrochemical performance of Pt-based catalysts used for polymer electrolyte membrane fuel cells in liquid half- and full-cells. Chem. Rev. 121, 15075–15140 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Doo, G. et al. Tuning the ionomer distribution in the fuel cell catalyst layer with scaling the ionomer aggregate size in dispersion. ACS Appl. Mater. Interfaces 10, 17835–17841 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Lazaridis, T., Stühmeier, B. M., Gasteiger, H. A. & El-Sayed, H. A. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts. Nat. Catal. 5, 363–373 (2022).

    Article  CAS  Google Scholar 

  15. Kongkanand, A. & Mathias, M. F. The priority and challenge of high-power performance of low platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Modestino, M. A. et al. Self-assembly and transport limitations in confined Nafion films. Macromolecules 46, 867–873 (2013).

    Article  CAS  Google Scholar 

  17. Page, K. A. et al. Confinement-driven increase in ionomer thin-film modulus. Nano Lett. 14, 2299–2304 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Tymoczko, J. et al. Oxygen reduction at a Cu-modified Pt(111) model electrocatalyst in contact with Nafion polymer. ACS Catal. 4, 3772–3778 (2014).

    Article  CAS  Google Scholar 

  19. Kodama, K. et al. Effect of the side-chain structure of perfluoro-sulfonic acid ionomers on the oxygen reduction reaction on the surface of Pt. ACS Catal. 8, 694–700 (2017).

    Article  Google Scholar 

  20. Ott, S. et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 19, 77–85 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Yarlagadda, V. et al. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3, 618–621 (2018).

    Article  CAS  Google Scholar 

  22. Jinnouchi, R. et al. The role of oxygen-permeable ionomer for polymer electrolyte fuel cells. Nat. Commun. 12, 4956 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Katzenberg, A. et al. Highly permeable perfluorinated sulfonic acid ionomers for improved electrochemical devices: insights into structure-property relationships. J. Am. Chem. Soc. 142, 3742–3752 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Doo, G. et al. Nano-scale control of the ionomer distribution by molecular masking of the Pt surface in PEMFCs. J. Mater. Chem. A 8, 13004–13013 (2020).

    Article  CAS  Google Scholar 

  25. Liu, H., Ney, L., Zamel, N. & Li, X. Effect of catalyst ink and formation process on the multiscale structure of catalyst layers in PEM fuel cells. Appl. Sci. 12, 3776–3816 (2022).

    Article  CAS  Google Scholar 

  26. Zhang, G. R., Munoz, M. & Etzold, B. J. M. Boosting performance of low temperature fuel cell catalysts by subtle ionic liquid modification. ACS Appl. Mater. Interfaces 7, 3562–3570 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, G. R., Munoz, M. & Etzold, B. J. M. Accelerating oxygen-reduction catalysts through preventing poisoning with non-reactive species by using hydrophobic ionic liquids. Angew. Chem. Int. Ed. 55, 2257–2261 (2016).

    Article  CAS  Google Scholar 

  28. Wang, T. et al. Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds. Nat. Catal. 4, 753–762 (2021).

    Article  CAS  Google Scholar 

  29. Wu, X., Chen, N., Klok, H. A., Lee, Y. M. & Hu, X. Branched poly(aryl piperidinium) membranes for anion-exchange membrane fuel cells. Angew. Chem. Int. Ed. 61, e202114892 (2022).

    CAS  Google Scholar 

  30. Liu, B. et al. Precise molecular-level modification of Nafion with bismuth oxide clusters for high-performance proton-exchange membranes. Angew. Chem. Int. Ed. 60, 6076–6085 (2021).

    Article  CAS  Google Scholar 

  31. Kunimatsu, K., Bae, B., Miyatake, K., Uchida, H. & Watanabe, M. ATR-FTIR study of water in Nafion membrane combined with proton conductivity measurements during hydration/dehydration cycle. J. Phys. Chem. B 115, 4315–4321 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Kusoglu, A. & Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Kusoglu, A., Dursch, T. J. & Weber, A. Z. Nanostructure/swelling relationships of bulk and thin-film PFSA ionomers. Adv. Funct. Mater. 26, 4961–4975 (2016).

    Article  CAS  Google Scholar 

  34. Kusoglu, A. et al. Impact of substrate and processing on confinement of Nafion thin films. Adv. Funct. Mater. 24, 4763–4774 (2014).

    Article  CAS  Google Scholar 

  35. Mikhailenko, S., Guiver, M. & Kaliaguine, S. Measurements of PEM conductivity by impedance spectroscopy. Solid State Ion. 179, 619–624 (2008).

    Article  CAS  Google Scholar 

  36. Wei, C. et al. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem. Soc. Rev. 48, 2518–2534 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Yamada, H., Kato, H. & Kodama, K. Cell performance and durability of Pt/C cathode catalyst covered by dopamine derived carbon thin layer for polymer electrolyte fuel cells. J. Electrochem. Soc. 167, 084508 (2020).

    Article  CAS  Google Scholar 

  38. Zhou, F. et al. Solving Nafion poisoning of ORR catalysts with an accessible layer: designing a nanostructured core-shell Pt/C catalyst via a one-step self-assembly for PEMFC. Int. J. Energy Res. 44, 10155–10167 (2020).

    Article  CAS  Google Scholar 

  39. Li, Y., Intikhab, S., Malkani, A., Xu, B. & Snyder, J. Ionic liquid additives for the mitigation of Nafion specific adsorption on platinum. ACS Catal. 10, 7691–7698 (2020).

    Article  CAS  Google Scholar 

  40. Garrick, T. R., Moylan, T. E., Yarlagadd, V. & Kongkanand, A. Characterizing electrolyte and platinum interface in PEM fuel cells using CO displacement. J. Electrochem. Soc. 164, F60–F64 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (2020YFB1506002, S.C.), the National Natural Science Foundation of China (grant nos. 52021004 and 91834301, Z.W.; grant nos. 22178034 and 21978028, S.C.; grant no. 22108020, M.W.) and the Chongqing Talent Program (cstc2022ycjh-bgzxm0096, S.C.).

Author information

Authors and Affiliations

Authors

Contributions

S.C., Z.W. and L.G. conceived of the project. S.C. directed the experimental work. S.C. and F.C. analysed the experimental data. F.C. carried out the sample synthesis, characterization, electrochemical measurements and fuel-cell tests. A.W. and M.W. helped with editing of the paper. S.C., L.G. and F.C. prepared the manuscript with feedback from the other authors.

Corresponding authors

Correspondence to Siguo Chen, Lin Guo or Zidong Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Hany El-Sayed and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1 and 2 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Chen, S., Wang, A. et al. Blocking the sulfonate group in Nafion to unlock platinum’s activity in membrane electrode assemblies. Nat Catal 6, 392–401 (2023). https://doi.org/10.1038/s41929-023-00949-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00949-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing